Звезда треугольник схема соединения
Звезда треугольник схема соединения
Подключение электродвигателя по схеме звезда-треугольник предполагает его запуск со статорными обмотками, соединенными звездой с последующим переключением их по достижении частоты вращении ротора близкой к номинальной на соединение треугольником (см. Схемы соединения обмоток электродвигателя ). Это относительно недорогой и довольно распространенный способ подключения электродвигателей (как правило, большой мощности), используемый для снижения их пусковых токов.
Известно, что при соединении статорных обмоток электродвигателя треугольником, он работает на свою полную паспортную мощность, что примерно в 1,5 раз больше. чем при соединении звездой. Тем не менее, стоит заметить, что это соединение характеризуется довольно высокими значениями пусковых токов. Соединение обмоток звездой позволяет существенно (в 3 раза) снизить эти токи, обеспечить более мягкую работу электродвигателя и щадящий режим его эксплуатации.
Однако, такое уменьшение пусковых пусковых токов, достигаемое уменьшением фазного напряжения, приводит, соответственно и к уменьшению пускового момента двигателя в 3 раза, что, в свою очередь ограничивает использование схемы звезда как способа для запуска электродвигателей под механической нагрузкой на его валу.
Схема подключения электродвигателя. Схема управления
Подключение оперативного напряжения осуществляется через контакт реле времени К1 с заданными значениями срабатывания и контакт К2 в цепи катушки контактора К3.
Включение контактора К3 приводит к размыканию его контакта К3, находящегося в цепи катушки контактора К2 во избежание его ошибочного включения и замыкается контакт К3 в цепи катушки магнитного пускателя К1, который совмещен с контактами реле времени.
Включение контактора К1 вызывает замыкание контакта К1 в цепи катушки контактора К1 с одновременным включением реле времени, которое размыкает свой контакт в цепи катушки контактора К3, замыкается контакт К1 в цепи катушки контактора К2.
Отключение контактора К3 вызывает замыкание его контакта К3 в цепи катушки контактора К2. Таким образом, на катушку К2 подается питающее напряжение, происходит включение этого контактора, вызывающее размыкание контакта К2, находящегося в цепи контактора К3, блокируя его от ошибочного включения.
Схема подключения электродвигателя. Силовая часть
Из схемы видно, что срабатыванием контактора К1 подается питание на начала обмоток U1, V1 и W1 электродвигателя М. Концы обмоток U2, V2 и W2 оказываются соединенными в результате срабатывания контактора К3. Таким образом, обмотки электродвигателя получаются соединенными по схеме – звезда.
Сработавшее совмещённое с пускателем К1 через определенный промежуток реле времени разрывает цепь катушки контактора К3, срабатывает контактор К2 и через его силовые контакты подается напряжение на концы обмоток двигателя U2, V2 и W2, образуя схему подключения – треугольник.
Разница схемы звезда и треугольник
Специфика трехфазных электрических сетей предусматривает два варианта подключения трехфазных нагрузок – звездой и треугольником. Это касается фазных обмоток в трехфазных электродвигателях, обмоток трансформаторов или нагревательных элементов электрических котлов. При этом для звезды начала всех обмоток соединяются с фазными проводами, а концы обмоток соединены в нулевую (нейтральную) точку. В случае соединения треугольником конец предыдущей обмотки соединяется с началом последующей, образуя равносторонний треугольник, а все 3 фазы подключаются к его вершинам (точкам соединения).
Однако геометрические схемные различия не единственное, что отличает звезду от треугольника. Рассматривая на примере активной нагрузки, представленной тремя ТЕНами, видим, что в случае соединения звездой при выходе из строя одного нагревателя, двое остальных, подключенных последовательно на линейное напряжение остаются работать, а вот при поломке сразу двух перестает работать и третий. Если все три ТЕНа подключены треугольником, то каждый из них работает от линейного напряжения (380 в) и нагреватель сохраняет работоспособность даже при выходе из строя двух элементов.
Схема подключения и мощность асинхронных электродвигателей
Иначе сказываются схемы подключения обмоток статора в асинхронных двигателях. Дело в том, что при подключении их звездой или треугольником мощность двигателя меняется в три раза. То есть в случае подключения трехфазных асинхронных электродвигателей предназначенных для работы в подключении звездой при 380 вольтах трехфазного напряжения, треугольником их мощность увеличивается втрое. При таком режиме двигатель просто сгорает, но если у двигателя, рассчитанного на работу при подключении треугольником в те же 380 В обмотки статора соединены звездой, то его мощность упадет в три раза.
Последнее свойство нашло широкое применение в схемах пуска электрического двигателя. При запуске электродвигателя величина пускового тока может до 10 раз превышать номинальные значения. Влияние пусковых нагрузок негативным образом сказывается на напряжении в сети и на работе подключенного к ней оборудования.
С целью снижения пусковых токов электродвигатель включается по схеме пуска звезда-треугольник, при которой до момента разгона он подключен звездой, а при достижении номинальных оборотов на валу переключается на схему треугольника. Для возможности реализации схемы переключения звезда-треугольник большинство мощных электродвигателей имеют отдельные выводы обмоток статора, сама коммутация обеспечивается применением контакторов.
Таким образом каждая из схем включения имеет свои достоинства. Для треугольника это достижение максимальной мощности, хотя требует строгого соблюдения эксплуатационных режимов, преимуществами соединения звездой можно назвать:
- плавный пуск;
- работу в номинальном режиме;
- нормальную реакцию на кратковременные перегрузки;
- оптимальные температурные режимы.
Схемы подключения обмоток генераторов
В отношении электрогенераторов схемы подключения обмоток тоже имеют свои отличия. Как и нагрузка, они также могут включаться по схеме звезды или треугольника, однако мощность генератора при этом остается неизменной. Изменения касаются выходного напряжения, так если обмотки генератора соединяют звездой, то выходное напряжение будет в √3 раз ниже, нежели при соединении треугольником, но поскольку мощность остается неизменной, то при увеличении напряжения значение тока падает на этот же множитель.
Смотрите также другие статьи :
Перекосом фазных напряжений в трехфазных электрических сетях называют несовпадение величин последних, вызванное, как правило, неравномерностью распределения нагрузок.
Если необходимо быстро определить, дифавтомат или УЗО перед вами, то необходимо обратить внимание на маркировку, на диф. автомате рядом с номинальным током стоит какая например буква С или В, что указывает на категорию расцепителя, если же стоит маркировка с указанием ампер (буква А), то это однозначно УЗО. Ниже на фото видно, в верхнем ряду установлены именно диф. автоматы, а в нижнем ряду УЗО.
§61. Схема соединения «треугольником»
При соединении фазных обмоток источника трехфазного тока «треугольником» (рис. 211, а) конец первой фазы АВ соединяется с началом второй фазы ВС, конец второй фазы соединяется с началом третьей фазы СА и конец третьей фазы — с началом первой АВ. Три линейных провода 1, 2 и 3, идущих к приемникам электрической энергии, присоединяются к началам А, В и С этих фаз. Точно так же могут соединяться и отдельные группы приемников ZAB, ZBC, ZCA (фазы нагрузки). При этом каждая фаза нагрузки присоединяется к двум линейным проводам, идущим от источника, т. е. включается на линейное напряжение, которое одновременно будет и фазным напряжением. Таким образом, в схеме «треугольник» фазные напряжения Uф равны линейным Uл и не зависят от сопротивлений ZAB, ZBC, ZCA фаз нагрузки.
Как следует из формулы (77), при соединении «треугольником» трех фазных обмоток генератора или другого источника переменного тока сумма э. д. с, действующая в замкнутом контуре, образованном этими обмотками, равна нулю. Поэтому в этом контуре при отсутствии нагрузки не возникает тока. Но каждая из фазных э. д. с. может создавать ток в цепи своей фазы.
Линейные токи в схеме «треугольник» согласно первому закону Кирхгофа для узлов А, В и С соответственно:
Переходя от мгновенных значений токов к их векторам, получим:
Следовательно, линейный ток равен векторной разности соответствующих фазных токов.
По полученным векторным уравнениям можно для равномерной нагрузки фаз построить векторную диаграмму (рис. 211,б), которую можно преобразовать в диаграмму (рис. 211, в), из которой
alt=»Рис. 211. Схема «треугольник» (а) и векторные диаграммы токов для этой схемы при равномерной нагрузке (б и в)» width=»300″ height=»93″ />Рис. 211. Схема «треугольник» (а) и векторные диаграммы токов для этой схемы при равномерной нагрузке (б и в)
видно, что при равномерной нагрузке фаз векторы линейных токов ?А, ?B, ?C образуют равносторонний треугольник ABC, внутри которого расположена трехлучевая звезда векторов фазных токов ?АВ, ?BC и ?СА. Отсюда по аналогии с диаграммой рис. 207,б следует, что
т. е. при равномерной нагрузке фаз в схеме «треугольник» линейный ток больше фазного тока в ?3 раз.
Следовательно, при переключении приемников со «звезды» на «треугольник» фазные токи возрастают в ?3 раз, а линейные токи — в 3 раза. Возможность включения одних и тех же приемников по схеме «звезда» или «треугольник» расширяет область их применения. Например, если приемник рассчитан на фазное напряжение 220 В, то при соединении по схеме «треугольник» он может быть включен в сеть с линейным напряжением 220 В, а при соединении по схеме «звезда» — в сеть с линейным напряжением 220?3 = 380 В. Приемники, рассчитанные на фазное напряжение 127 В, могут работать в сетях с линейными напряжениями 127 и 127?3= 220 В.
Особенности подвода трехфазного тока к приемникам. В трех-проводной трехфазной сети (при схемах «звезда без нулевого провода» и «треугольник») алгебраическая сумма мгновенных значений линейных токов в любой момент времени равна нулю, поэтому такие токи совместно не создают магнитного поля. Это позволяет прокладывать три линейных провода в одной общей металлической трубе или в кабеле с металлической оболочкой без опасности образования вихревых токов. Не допускается прокладка линейных проводов по отдельности в металлических трубах, так как возникающие вихревые токи вызывали бы сильный нагрев металла. То же самое происходило бы при прокладке в кабеле с металлической оболочкой или в трубе трех линейных проводов при схеме «звезда с нулевым проводом», так как сумма токов в них не равна нулю.
Схемы соединений обмоток треугольник и звезда для чайников.
Наиболее распространенный вопрос у начинающих изучения устройства трансформаторов или иных электротехнических устройств это «Что такое звезда и треугольник?». Чем же они отличаются и как устроены, попробуем разъяснить в нашей статье.
Рассмотрим схемы соединений обмоток на примере трехфазного трансформатора. В своем строении он имеет магнитопровод, состоящий из трёх стержней. На каждом стержне есть две обмотки – первичная и вторичная. На первичную подается высокое напряжения, а со вторичной снимается низкое напряжение и идет к потребителю. В условном обозначении схема соединений обозначается дробью (например, Y⁄∆ или Y/D или У/Д), значение числителя – соединение обмотки высшего напряжения (ВН), а значение знаменателя – низшего напряжения (НН).
Каждый стержень имеет как первичную обмотку так и вторичную (три первичных и три вторичных обмотки). У каждой обмотки есть начало и конец. Обмотки можно соединить между собой способом звезда или треугольник. Для наглядности обозначим вышеперечисленное схематически (рис. 1)
При соединении звездой, концы обмоток соединяются вместе, а из начал идут три фазы к потребителю. Из вывода соединений концов обмоток, выводят нейтральный провод N (он же нулевой). В итоге получается четырёх — проводная, трёхфазная система, которая часто встречается вдоль линий воздушных электропередач.(рис. 2)
Преимущества такой схемы соединения в том, что мы можем получить 2 вида напряжения: фазное (фаза+нейтраль) и линейное. В таком соединении линейное напряжение больше фазного в √3 раз. Зная, что фазное напряжение дает нам 220В, то умножив его на √3 = 1,73, получим примерно 380В – напряжение линейное. Но что касается электрического тока, то в этом случае фазный ток равен линейному, т.к. что линейный, что фазный токи одинаково выходят из обмотки, и другого пути у него нет. Так же стоит отметить что только в соединении звезда имеется нейтральный провод, который является «уравнителем» нагрузки, чтобы напряжение не менялось и не скакало.
Рассмотрим теперь соединение обмоток треугольником. Если мы конец фазы А, соединим с началом фазы В, конец фазы В соединим с началом фазы С, а конец фазы С соединим с началом фазы А, то получим схему соединения обмотки треугольником. Т.е. в этой схеме обмотки соединены последовательно. (рис. 3)
В основном такая схема соединения применяется для симметричной нагрузки, где по фазам нагрузка не изменяется. В таком соединении фазное напряжение равно линейному, а вот электрический ток, наоборот, в такой схеме разный. Ток линейный больше фазного тока в √3 раз. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой
последовательности. Простыми словами, схема соединения треугольником обеспечивает сбалансированное напряжение.
Подведем итоги. Для базового определения схем соединения обмоток силовых трансформаторов, необходимо понимать, что разница между этими соединениями состоит в том, что в звезде все три обмотки соединены вместе одним концом каждой из обмоток в одной (нейтральной) точке, а в треугольнике обмотки соединены последовательно. Соединение звезда позволяет нам создавать два вида напряжения: линейное (380В) и фазное (220В), а в треугольнике только 380В.
Выбор схемы соединения обмоток зависит от ряда причин:
- Схемы питания трансформатора
- Мощности трансформатора
- Уровня напряжения
- Асимметрии нагрузки
- Экономических соображений
Так например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора схемой звезда, заземлив нулевую точку. В данном случае получится, что напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раз меньше линейного, что приведёт к снижению стоимости изоляции.
На практике чаще всего встречаются следующие группы соединений: Y/Y, D/Y, Y/D.
Группа соединений обмоток Y/Y (звезда/звезда) чаще всего применяется в трансформаторах небольшой мощности, питающих симметричные трёхфазные электроприборы/электроприемники. Так же иногда применяется в схемах большой мощности, когда требуется заземление нейтральной точки.
Группа соединения обмоток D/Y (треугольник/звезда) применяется, в основном в понижающих трансформаторах больших мощностей. Чаще всего трансформаторы с таким соединением работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звезды заземляется, для использования как линейного, так и фазного напряжений.
Группа соединений обмоток Y/D (звезда/треугольник) используется, в основном, в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.