Hydratool.ru

Журнал "ГидраТул"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Знак конусности на чертеже

Конусность

Конусность — отношение разности диаметров двух поперечных сечений кругового конуса к расстоянию между ними.

Конусность имеет двойной Уклон: k=2i Конусность на чертеже может быть указана в градусной мере, в радианах и в процентах. Заданы конусность пробки крана 1:5, диаметр D=BC=20 мм, длина l=35 мм.

Конусность

Необходимо построить очертание пробки крана одним из двух способов: Первый способ. Из формулы k=2i находим i=1:10. Отмечаем точки BC и строим треугольник DKP так, чтобы KP_BK=1:10. Продолжив BP до пересечения с осью конуса, получим вершину конуса S. Точку S соединяем с точкой C. Отложив по оси пробки от BC отрезок l=35 мм и проведя через конец этого отрезка прямую, перпендикулярную к оси , получим диаметр d=EF=13 мм торца пробки; Второй способ. Из формулы k=(D-d)/l находим d=EF=20-35/5=13 мм; Величина угла при вершине конуса:

здесь угол φ представлен в радианах.

где L — расстояние от большого сечения до вершины S конуса, а отношение: D/(2L) = tgφ Пусть задана конусность например 1 : 2,5 откуда i=1:5 и tgφ=0,2 тогда перевод ее в градусы выполняется по формулам:

Конусность стандартизована. ГОСТ 8593-81 устанавливает нормальные конусности и углы конусов

Обозна- чениеконусаКонус-ностьУголконусаУголуклона
Ряд 1Ряд 2Угл. ед.Рад.Угл. ед.Рад.
1:5001:5000,00200006`52,5″0,00200003`26,25″0,0010000
1:2001:2000,005000017`11,3″0,00500008`25,65″0,0025000
1:1001:1000,010000034`22,6″0,010000017`11,3″0,0050000
1:501:500,02000001°8`45,2″0,019999634`22,6″0,0099998
1:301:300,03333331°54`34,9″0,033330457`17,45″0,0166652
1:201:200,05000002°51`51,1″0,04998961°25`55,55″0,0249948
1:151:150,06666673°49`5,9″0,06664201°54`32,95″0,0333210
1:121:120,08333334°46`18,8″0,08328522°23`9,4″0,0416426
1:101:100,10000005°43`29,3″0,09991682°51`44,65″0,0499584
1:81:80,12500007°9`9,6″0,12483763°34`34,8″0,0624188
1:71:70,14285718°10`16,4″0,14261484°5`8,2″0,0713074
1:61:60,16666679°31`38,2″0,16628244°45`49,1″0,0831412
1:51:50,200000011°25`16,3″0,19933745°42`38,15″0,0996687
1:41:40,250000014°15`0,1″0,24871007°7`30,05″0,1243550
1:31:30,333333318°55`28,7″0,33029729°27`44,35″0,1651486
30°1:1,8660250,535898530°0,523598815°0,2617994
45°1:1,2071070,828426945°0,785398222°30`0,3926991
60°1:0,8660251,154701060°1,047197630°0,5235988
75°1:0,6516131,534653275°1,308997037°30`0,6544985
90°1:0,5000002,000000090°1,570796445°0,7853982
120°1:0,2886753,4641032120°2,094395260°1,0471976

Конусности и углы конусов должны соответствовать указанным на чертеже и в таблице. При выборе конусностей или углов конусов ряд 1 следует предпочитать ряду 2.

Конусность поверхности

Конусность

обозначается на чертеже: — надписью Конусность с указанием ее величины; — указывающей на нее стрелкой с полкой где пишется: — Конусность с указанием ее величины; — знак конусности и ее величина.

Как вычислить конусность

Иногда, в задачах по начертательной геометрии или работах по инженерной графике, или при выполнении других чертежей, требуется построить уклон и конус. В этой статье Вы узнаете о том, что такое уклон и конусность, как их построить, как правильно обозначить на чертеже.

Что такое уклон? Как определить уклон? Как построить уклон? Обозначение уклона на чертежах по ГОСТ.

Уклон. Уклон это отклонение прямой линии от вертикального или горизонтального положения. Определение уклона. Уклон определяется как отношение противолежащего катета угла прямоугольного треугольника к прилежащему катету, то есть он выражается тангенсом угла а. Уклон можно посчитать по формуле i=AC/AB=tga.

Построение уклона. На примере (рисунок ) наглядно продемонстрировано построение уклона. Для построения уклона 1:1, например, нужно на сторонах прямого угла отложить произвольные, но равные отрезки. Такой уклон, будет соответствовать углу в 45 градусов. Для того чтобы построить уклон 1:2, нужно по горизонтали отложить отрезок равный по значению двум отрезкам отложенным по вертикали. Как видно из чертежа, уклон есть отношение катета противолежащего к катету прилежащему, т. е. он выражается тангенсом угла а.

Читайте так же:
Как снять зажатый диск с болгарки

Обозначение уклона на чертежах. Обозначение уклонов на чертеже выполняется в соответствии с ГОСТ 2.307—68. На чертеже указывают величину уклона с помощью линии-выноски. На полке линии-выноски наносят знак и величину уклона. Знак уклона должен соответствовать уклону определяемой линии, то есть одна из прямых знака уклона должна быть горизонтальна, а другая должна быть наклонена в ту же сторону, что и определяемая линия уклона. Угол уклона линии знака примерно 30°.

Что такое конусность? Формула для расчёта конусности. Обозначение конусности на чертежах.

Конусность. Конусностью называется отношение диаметра основания конуса к высоте. Конусность рассчитывается по формуле К=D/h, где D – диаметр основания конуса, h – высота. Если конус усеченный, то конусность рассчитывается как отношение разности диаметров усеченного конуса к его высоте. В случае усечённого конуса, формула конусности будет иметь вид: К = (D-d)/h.

Обозначение конусности на чертежах. Форму и величину конуса определяют нанесением трех из перечисленных размеров: 1) диаметр большого основания D; 2) диаметр малого основания d; 3) диаметр в заданном поперечном сечении Ds , имеющем заданное осевое положение Ls; 4) длина конуса L; 5) угол конуса а; 6) конусность с . Также на чертеже допускается указывать и дополнительные размеры, как справочные.

Размеры стандартизованных конусов не нужно указывать на чертеже. Достаточно на чертеже привести условное обозначение конусности по соответствующему стандарту.

Конусность, как и уклон, может быть указана в градусах, дробью (простой, в виде отношения двух чисел или десятичной), в процентах. Например, конусность 1:5 может быть также обозначена как отношение 1:5, 11°25’16», десятичной дробью 0,2 и в процентах 20.

Для конусов, которые применяются в машиностроении, OCT/BKC 7652 устанавливает ряд нормальных конусностей. Нормальные конусности — 1:3; 1:5; 1:8; 1:10; 1:15; 1:20; 1:30; 1:50; 1:100; 1:200. Также в могут быть использованы — 30, 45, 60, 75, 90 и 120°.

Построение уклона и конусности

Уклоном называют величину, характеризующую наклон одной прямой линии к другой прямой. Уклон выражают дробью или в процентах. Уклон / отрезка В С относительно отрезка ВЛ определяют отношением катетов прямоугольного треугольника ЛВС (рисунок 50, а), т. е. Для построения прямой ВС (рисунок 50. а) с заданной величиной уклона к горизонтальной прямой, например 1:4, необходимо от точки А влево отложить отрезок АВ, равный четырем единицам длины, а вверх отрезок АС, равный одной единице длины. Точки С и В соединяют прямой, которая даст направление искомого уклона. Уклоны применяются при вычерчивании деталей, например, стальных балок и рельсов, изготовляемых на прокатных станах, и некоторых деталей, изготовленных литьем. При вычерчивании контура детали с уклоном сначала строится линия уклона, а затем контур. Если уклон задается в процентах, например, 20 % (рисунок 50, б)> то линия уклона строится так же, как гипотенуза прямоугольного треугольника. Длину одного из катетов принимают равной 100 %, а другого — 20 %. Очевидно, что уклон 20 % есть иначе уклон 1:5. Г1о ГОСТ 2.307—68 перед размерным числом, определяющим уклон, наносят условный знак, острый угол которого должен быть направлен в сторону уклона (рисунок 50, а и б). Подробнее обозначение уклона приведено в разделе 1.7 «Нанесение размеров и предельных отклонений». Конусностью называется отношение диаметра основания конуса к его высоте (рисунок 51, а). Обозначается конусность буквой С. Если конус усеченный (рисунок 51, б) с диаметрами оснований D и d и длиной L, то конусность определяется по формуле: Например (рисунок 51, б), если известны размеры D= 30 мм, d- 20 мм и L = 70 мм, то Если известны конусность С, диаметр одного из оснований конуса d и длина конуса можно определить второй диаметр конуса. Например, С- 1:7, d- 20 мм и 1 = 70 мм; D находят по формуле (рисунок 51, б). По ГОСТ 2.307—68 перед размерным числом, характеризующим конусность, необходимо наносить условный знак конусности, который имеет вид равнобедренного треугольника с вершиной, направленной в сторону вершины конуса (рисунок 51, б). Подробнее обозначение конусности приведено в разделе 1.7 «Нанесение размеров и предельных отклонений». Вопросы для самопроверни 1. Что называется уклоном? 2. Что называется конусностью? 3. Как обозначается на чертеже конусность и уклон? 4. Как определяется конусность и уклон?

Читайте так же:
Бензопила глохнет когда газуешь

ОБРАБОТКА КОНИЧЕСКИХ ПОВЕРХНОСТЕЙ

Уклоном называется отношение разности радиусов двух поперечных сечений конуса к расстоянию между ними. Его определяют по формуле

Из формул (9) и (10) видно, что уклон равен половине конусности.

Тригонометрически уклон равен тангенсу угла уклона (см. рис. 129, б, треугольник ABC), т. е.

На чертеже (рис. 130) конусность обозначают знаком

Знак конусности

Конус – лат. conus – геометрическое тело, образованное вращением прямоугольного треугольника около одного из его катетов.

На чертежах с коническими поверхностями иногда указывается конусность c размерными числами в виде соотношения, перед которыми устанавливается знак в виде остроугольного треугольника « ». Знак конусности с размерными числами наносятся над осевой линией или на полке линии-выноски.

Обозначение конусности на чертежах

Отношение диаметра основания конуса к его высоте называется конусностью.

Конусность определяется по следующей формуле:

  • С – обозначение конусности
  • D – большой диаметр
  • d – меньший диаметр
  • L – длинна

Например, если известны размеры D = 30 мм, d = 20 мм и L = 70 мм, то

Если известны конусность С, диаметр одного из оснований конуса d и длина конуса L, можно определить второй диаметр конуса. Например, С = 1:7, d = 20 мм и L = 70 мм

Основные правила нанесения размеров на чертеже

Размерная линия проводится параллельно отрезку, размер которого над ней наносится. Ее проводят между выносными линиями, проведенными перпендикулярно размерным. Допускается размерные линии проводить непосредственно к линиям видимого контура, осевым и центровым. В отдельных случаях размерная линия может проводиться не перпендикулярно выносной. Размерные линии ограничивают стрелки. В отдельных случаях их проводят не полностью, а с обрывом стрелки с одной стороны (для диаметров). В пределах одного чертежа величина стрелок должна быть по возможности одинаковой.

Угловые размеры на чертежах проставляются в градусах, минутах и секундах с указанием единиц измерения. Размер угла наносят над размерной линией, которая проводится в виде дуги с центром в его вершине. Выносные линии в этом случае проводятся радиально. Если размерная линия будет находиться в зоне, которая на чертеже заштрихована, размерные числа наносят на полках линий-выносок (см. рисунок 2.2).

С целью упрощения ряда изображений, создания удобств для чтения чертежа стандарт предусматривает применение условных обозначений и графических знаков, которые ставятся перед размерными числами. Так, перед размерным числом диаметра наносится знак Ø. Причем между знаком и числом никаких пропусков не предусмотрено.

Читайте так же:
Как отрегулировать строительный степлер

Рисунок 2.1 — Виды объектов на чертеже

Перед размерным числом радиуса дуги всегда ставится знак в виде латинской буквы R. Размерную линию в этом случае проводят по направлению к центру дуги и ограничивают только одной стрелкой, упирающейся в дугу или ее продолжение. Если величина радиуса на чертеже менее 6 мм, стрелку располагают с внешней стороны дуги. При необходимости задания положения центра дуги его отмечают пересечением центровых или выносных линий.

Для простановки размеров квадрата применяют соответствующий знак □, высота которого равна 7/10 высоты размерного числа. При ином расположении квадрата наносят размеры его сторон. Знак квадрата наносят только на том изображении, на котором он проецируется в линию.

Знак конусности поверхности наносится на полке линии-выноски, расположенной параллельно оси конуса или на оси конуса. Знак конусности располагают так, чтобы его острый угол был направлен в сторону вершины конуса. Величину конусности определяют отношением разности диаметров двух поперечных сечений конуса к расстоянию между этими сечениями, т. е. k = D – d*l, где D – диаметр большого сечения; d – диаметр меньшего сечения; l – расстояние между сечениями. Конусность указывают в виде простого дробного числа.

Знак уклона прямой указывают на полке линии-выноски. Уклон i представляет собой тангенс угла между данной прямой и горизонтальной или вертикальной прямой (рис. 2.2, а). Знак уклона располагается так, чтобы острый угол его был направлен в сторону уклона прямой (см. рисунок 2. 2, б). Уклон, как и конусность, на чертеже задают простой дробью, в процентах или в промилях.

Для обозначения сферы на чертеже применяют знак диаметра или радиуса. В тех случаях, когда по чертежу сферу трудно отличить от других поверхностей, перед знаком радиуса или диаметра добавляется слово «Сфера». Надпись на чертеже выполняется по типу «Сфера диаметр 17» или «Сфера R10».

Часто, простые плоские детали изображаются в виде одной проекции. В этих случаях ее толщину обозначают строчной буквой s,и надпись на чертеже выполняется по типу s2 и располагается на полке линии-выноски. Длину предмета указывают буквой L.

Рисунок 2.2. — Обозначение уклонов

Фаски на чертежах наносят двумя линейными размерами (см. рисунок 2.3, а) или одним линейным и одним угловым (см. рисунок 2.3, б). В том случае, если угол наклона образующей конуса равен 45°, то одним линейным размером (см. рисунок 2.3, в).

Рисунок 2.3 — Обозначения фасок

Разрезы

Разрез – это изображение предмета, мысленно рассеченного одной или несколькими секущими плоскостями. Мысленное рассечение предмета определяет условность изображения – разреза, и изменения других изображений не влечет, т.к. удаляют часть предмета, находящуюся между наблюдателем и плоскостью проекций, условно. Разрез показывает внутреннюю конструкцию предмета, дает возможность избежать применения штриховых линий, затрудняющих чтение сложных элементов на чертеже.

Разрезы принято подразделять по следующим признакам:

1. От положения секущих плоскостей относительно плоскостей проекций: горизонтальный, фронтальный, профильный, наклонный.

2. От числа секущих плоскостей: простой – одна секущая плоскость; сложный – две и более секущих плоскостей.

Сложные разрезы бывают: сложный ступенчатый; сложный ломаный.

3. От направления рассечения предмета: продольный – вдоль больших измерений предмета; поперечный – перпендикулярно большим измерениям предмета.

4. От объема рассечения предмета: полный, когда весь предмет рассекается; местный, если часть предмета рассекается.

Читайте так же:
Как сделать маршрутную карту

Положение секущей плоскости указано на чертеже линией сечения – разомкнутая линия (рисунок 2.4). При сложном разрезе штрихи проведены также у мест переходов одной секущей в другую (в ступенчатом) и пересечения секущих между собой (в ломаном). На начальном и конечном штрихах стоят стрелки, указывающие направление взгляда (проецирования). Стрелки наноситься на расстоянии 2-3 мм от внешних концов штрихов.

Рисунок 2.4 — Положения секущих плоскостей разреза

У начала и конца линии сечения, а при необходимости и у мест переходов и пересечения секущих плоскостей ставят одну и ту же прописную букву русского алфавита, причем букву всегда располагают горизонтально и с внешней стороны стрелки. Размер шрифта для этих букв берут на 1-2 размера больше, чем размер шрифта для нанесения размеров. Над разрезом ставят те же буквы и не подчеркивают.

Случаи разрезов.

При выполнении простых горизонтальных, фронтальных, профильных разрезов в случаях, когда секущая плоскость совпадает с плоскостью симметрии предмета в целом, а соответствующие изображения расположены на одном и том же листе в непосредственной проекционной связи и не разделены каким-либо другим изображением, то положение секущей плоскости не отмечают и разрез надписью не сопровождают.

При выполнении разрезов, полученных одной секущей плоскостью, но имеющих противоположное направление проецирования, не используют одну линию сечения, а стрелки направлены соответственно выбранным направлениям проецирования и отмечены разными прописными буквами русского алфавита.

Если местный разрез выполняют на части предмета, представляющего тело вращения, то такой разрез можно отделить от вида штрихпунктирной тонкой линией, которая и является осью этой части предмета.

Допускается соединять четверть вида и четверти трех разрезов (и др. сочетания), при условии, что каждое из этих изображений в отдельности симметрично.

Если вид сверху не является необходимым и чертеж состоит из изображений на фронтальной и профильной плоскостях проекций, то при ступенчатом разрезе линии сечения и надписи обозначения размеров наносят.

Сечения

Сечение – это изображение фигуры, получающееся при мысленном рассечении предмета одной или несколькими плоскостями. На сечении показывается только то, что получается непосредственно в секущей плоскости.

Сечения, не входящие в состав разреза, разделяют на вынесенные и наложенные.

Вынесенные сечения являются предпочтительными и их допускается располагать в разрыве между частями одного и того же вида. Контур вынесенного сечения, а также сечения, входящего в состав разреза, изображают сплошными основными линиями, а контур наложенного сечения – сплошными тонкими линиями, причем контур основного изображения в месте расположения наложенного сечения не прерывают.

Ось симметрии наложенного или вынесенного сечения указывают штрихпунктирной тонкой линией без обозначения буквами или стрелками и линию сечения не проводят.

Вынесенные сечения располагают: на любом месте поля чертежа; на месте основного вида; с поворотом с добавлением знака «повернуто».

Секущие плоскости выбирают так, чтобы получить нормальные поперечные сечения.

Выносные элементы

При выполнении чертежей в некоторых случаях появляется необходимость в построении дополнительного отдельного изображения какой-либо части предмета, требующей пояснений в отношении формы, размеров или других данных. Такое изображение называется выносным элементом. Его выполняют обычно увеличенным. Выносной элемент может быть выложен как вид или как разрез.

Рисунок 2.5. — Выносной элемент

При построении выносного элемента соответствующее место основного изображения отмечают замкнутой сплошной тонкой линией, обычно овалом или окружностью, и обозначают заглавной буквой русского алфавита на полке линии-выноски. У выносного элемента делается запись по типу А (5:1). На рисунке 2.5 приведен пример выполнения выносного элемента. Его располагают как можно ближе к соответствующему месту на изображении предмета.

Читайте так же:
Горелка насадка на газовый баллончик

Дата добавления: 2018-05-10 ; просмотров: 1822 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уклон и Конусность

Иногда, в задачах по начертательной геометрии или работах по инженерной графике, или при выполнении других чертежей, требуется построить уклон и конус. В этой статье Вы узнаете о том, что такое уклон и конусность, как их построить, как правильно обозначить на чертеже.

Уклон и Конусность

Что такое уклон? Как определить уклон? Как построить уклон? Обозначение уклона на чертежах по ГОСТ.

Уклон. Уклон это отклонение прямой линии от вертикального или горизонтального положения.
Определение уклона. Уклон определяется как отношение противолежащего катета угла прямоугольного треугольника к прилежащему катету, то есть он выражается тангенсом угла а. Уклон можно посчитать по формуле i=AC/AB=tga.

Уклон: рассчёт уклона

Построение уклона. На примере (рисунок ) наглядно продемонстрировано построение уклона. Для построения уклона 1:1, например, нужно на сторонах прямого угла отложить произвольные, но равные отрезки. Такой уклон, будет соответствовать углу в 45 градусов. Для того чтобы построить уклон 1:2, нужно по горизонтали отложить отрезок равный по значению двум отрезкам отложенным по вертикали. Как видно из чертежа, уклон есть отношение катета противолежащего к катету прилежащему, т. е. он выражается тангенсом угла а.

Построение уклона, определение уклона

Обозначение уклона на чертежах. Обозначение уклонов на чертеже выполняется в соответствии с ГОСТ 2.307—68. На чертеже указывают величину уклона с помощью линии-выноски. На полке линии-выноски наносят знак и величину уклона. Знак уклона должен соответствовать уклону определяемой линии, то есть одна из прямых знака уклона должна быть горизонтальна, а другая должна быть наклонена в ту же сторону, что и определяемая линия уклона. Угол уклона линии знака примерно 30°.

Что такое конусность? Формула для расчёта конусности. Обозначение конусности на чертежах.

Конусность. Конусностью называется отношение диаметра основания конуса к высоте. Конусность рассчитывается по формуле К=D/h, где D – диаметр основания конуса, h – высота. Если конус усеченный, то конусность рассчитывается как отношение разности диаметров усеченного конуса к его высоте. В случае усечённого конуса, формула конусности будет иметь вид: К = (D-d)/h.

Рассчёт конусности

Обозначение конусности на чертежах. Форму и величину конуса определяют нанесением трех из перечисленных размеров: 1) диаметр большого основания D; 2) диаметр малого основания d; 3) диаметр в заданном поперечном сечении Ds , имеющем заданное осевое положение Ls; 4) длина конуса L; 5) угол конуса а; 6) конусность с . Также на чертеже допускается указывать и дополнительные размеры, как справочные.

Размеры стандартизованных конусов не нужно указывать на чертеже. Достаточно на чертеже привести условное обозначение конусности по соответствующему стандарту.

Обозначение конусности

Конусность, как и уклон, может быть указана в градусах, дробью (простой, в виде отношения двух чисел или десятичной), в процентах.
Например, конусность 1:5 может быть также обозначена как отношение 1:5, 11°25’16», десятичной дробью 0,2 и в процентах 20.
Для конусов, которые применяются в машиностроении, OCT/BKC 7652 устанавливает ряд нормальных конусностей. Нормальные конусности — 1:3; 1:5; 1:8; 1:10; 1:15; 1:20; 1:30; 1:50; 1:100; 1:200. Также в могут быть использованы — 30, 45, 60, 75, 90 и 120°.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector