Hydratool.ru

Журнал "ГидраТул"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Измерение емкости

Измерение емкости

Чтобы провести измерение емкости, мультиметр выполняет зарядку конденсатора от известного источника тока, измеряет результирующее напряжение, а затем вычисляет емкость.

Предупреждение! Исправный конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Прежде чем коснуться его, а также перед выполнением измерений: а) отключите питание, б) с помощью мультиметра убедитесь, что питание отключено, в) осторожно разрядите конденсатор, подключив резистор к выводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.

Для безопасной разрядки конденсатора: После отключения питания подключите резистор на 20 000 Ом, 5 Вт к клеммам конденсатора на пять секунд. С помощью мультиметра убедитесь, что конденсатор полностью разряжен.

  1. С помощью цифрового мультиметра (DMM) убедитесь, что в контуры не поступает питание. Если конденсатор встроен в цепь переменного тока, настройте мультиметр на измерение напряжения переменного тока. Если конденсатор встроен в цепь постоянного тока, настройте цифровой мультиметр на измерение напряжения постоянного тока.
  2. Осмотрите конденсатор. При наличии утечек, трещин, вздутий или других признаков износа замените конденсатор.
  3. Переведите поворотный переключатель в положение измерения емкости ( alt=»Символ емкости» width=»» height=»» />). Этот символ на переключателе часто совмещен с символом другой функции. Для начала измерения обычно требуется не только перевести переключатель в нужное положение, но и нажать функциональную кнопку. Инструкции см. в руководстве пользователя мультиметра.

Для правильного измерения необходимо отсоединить конденсатор от цепи. Разрядите конденсатор, как описано выше в предупреждении.

Примечание. У некоторых мультиметров предусмотрен режим относительных измерений (REL). При измерении малых значений емкости можно использовать режим относительных измерений для устранения емкости измерительных проводов. Чтобы перевести мультиметр в режим относительных измерений, оставьте измерительные провода разомкнутыми и нажмите кнопку REL. Таким образом вы устраните остаточную емкость измерительных проводов.

Общая информация об измерении емкости

Поиск и устранение неисправностей в однофазных электродвигателях является одним из наиболее распространенных способов использования функции измерения емкости.

Невозможность запуска однофазного электродвигателя с конденсатором является признаком неисправности конденсатора. Такие электродвигатели продолжают работать после включения, что усложняет поиск и устранение неисправностей. Хорошим примером такой проблемы является неисправность конденсатора для жесткого запуска на компрессорах системы ОВКВ. Двигатель компрессора может запуститься, но вскоре он перегревается, что приводит к срабатыванию выключателя.

Для проверки состояния конденсатора на однофазных электродвигателях с такими проблемами и шумами требуется мультиметр. Почти на всех конденсаторах электродвигателей указано значение емкости в микрофарадах.

Трехфазные конденсаторы для коррекции коэффициента мощности обычно защищены предохранителями. В случае отказа одного или нескольких конденсаторов эффективность системы снижается, что с большой долей вероятности приводит к увеличению расходов на коммунальные услуги и произвольному отключению оборудования. В случае перегорания предохранителя необходимо измерить емкость в микрофарадах на предположительно неисправном конденсаторе и убедиться, что полученное значение находится в пределах диапазона, указанного на конденсаторе.

Полезно знать некоторые дополнительные обстоятельства, связанные с емкостью.

Измерение ёмкости конденсаторов

Схемы, приведённые в данной статье, рисовались несколько лет назад и оригинальные файлы формата .spl безвозвратно утеряны. Из-за чего проблематично было оперативно внести необходимые изменения в схему, в частности рис.1. Поэтому приведу ниже подкорректированное и правильное соответствие частот генератора и диапазонов измерений:

  • 1 МГц — 100 пФ — 100 мкГн
  • 100 кГц — 1000 пФ — 1 мГн
  • 10 кГц — 0,01 мкФ — 10 мГн
  • 1 кГц — 0,1 (+100) мкФ — 100 мГн
  • 100 Гц — 1 (+1000) мкФ — 1 Гн
  • 10 Гц — 10 (+10000) мкФ — 10 Гн

(в скобках указаны значения ёмкости для электролитических конденсаторов)

Материал в редакцию сайта Радиосхемы прислал автор — Андрей Барышев.

Обсудить статью УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей

Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Метод баллистического гальванометра.

а затем и ис
Рис. 23. Схема для измерения емкости амперметром, вольтметром и ваттметром.
Рис. 24. Схема для измерения емкости баллистическим гальванометром.
Если переключатель П и Яг (рис. 24) установить в положение I, то образцовый конденсатор С0 получит заряд Qv=UiC0, где Ui — показания вольтметра. Если перевести переключатель П-л в положение 2, то конденсатор
Со разрядится и через баллистический гальванометр пройдет заряд Q0=U1C0=C0ai=C^uu где ai — угол отклонения подвижной части гальванометра.
Баллистическая постоянная гальванометра
Если при положении 1 переключателя П2 и положении 2 переключателя П1 поднять напряжение до величины Uz, то испытуемый конденсатор получит заряд
Если перебросить нож переключателя П2 из положения 1 в положение 2, конденсатор разрядится через гальванометр, т. е. через него пройдет заряд
и подвижная часть его будет отброшена на угол az-
Рис. 25. Схемы измерения емкости трехфазных конденсаторов. а — при соединении фаз треугольником; б — при соединении фаз звездой (на обеих схемах стрелки направлены к измерительным приборам).
Измеряемая емкость находится по формуле
При измерении этим методом возможны значительные погрешности вследствие остаточного заряда (неполный заряд конденсатора).
Схемы измерения емкости конденсаторов. Измерение емкости однофазных конденсаторов любым из вышеприведенных методов дает непосредственную величину емкости конденсатора без каких-либо пересчетов. Полученные замеры емкости трехфазных конденсаторов требуют соответствующего пересчета для перехода к емкости фазы.
На рис. 25 приведены схемы измерения емкости трехфазных конденсаторов. По схеме на рис. 25, а измеряется (при соединении фаз треугольником) емкость Ci-zs между зажимами I и соединенными вместе зажимами 2 и 3, а по схеме па рис. 25,6 (при соединении фаз звездой) — емкость Ci_2 между зажимами I и 2.
Для каждого трехфазного конденсатора необходимо произвести три измерения между различными сочетаниями выводов, после чего можно найти емкость каждой фазы конденсатора по формулам:
б) для трехфазного конденсатора, соединенного звездой,
а) для трехфазного конденсатора, соединенного треугольником,
В табл. 3 приведен порядок измерения емкости трехфазных конденсаторов, соединенных в треугольник.
Таблица 3
Порядок измерения емкости трехфазных конденсаторов, соединенных в треугольник

Способы определения емкости конденсатора

После того, как контакты закоротили, можно осуществлять определение сопротивления. Если элемент исправлен, то сразу после подключения он начнет заряжаться постоянным током. В этом случае сопротивление отобразиться минимальное и будет продолжать расти.

В случае если конденсатор неисправен, то мультиметр будет сразу указывать бесконечность или будет указывать нулевое сопротивление и при этом пищать. Такая проверка осуществляется, если конструкция полярная.

Для того чтобы узнать емкость необходимо иметь мультиметр с функцией измерения параметра «Сх».

Режим Cx

Определить емкость с помощью такого мультиметра просто: установить его в режим «Сх» и указать минимальный предел измерения, которым должен обладать данный конденсатор. В таких мультиметрах есть специальные гнезда с определенными пределами измерения. В эти гнезда вставляется конденсатор согласно его пределу измерения и происходит определение его параметров.

Если в тестере таких гнезд нет, то определить емкость можно с помощью измерительных щупов, как показано на фото ниже:

Измерение щупами

Важно! В отдельной статье мы рассказывали о том, как проверить исправность конденсатора. Рекомендуем также ознакомиться с этим материалом!

Применение формул

Что делать, если под рукой нет такого мультиметра с гнездами измерения, а есть только обычный бытовой прибор? В таком случае необходимо вспомнить законы физики, которые помогут определить емкость.

Для начала вспомним, что в случае, когда конденсатор заряжается от источника неизменного напряжения через резистор, то существует закономерность, согласно которой напряжение на устройстве будет подходить к напряжению источника и в конечном итоге сравняется с ним.

Время

Но для того чтобы этого не ожидать, можно процесс упростить. Например, за определенное время, которое равняется 3*RC, во время заряжения элемент достигает напряжения 95% примененного к RC цепи. Таким образом, по току и напряжению можно определить константу времени. А правильнее, если знать вольтаж в блоке питания, номинал самого резистора, происходит определение постоянной времени, а затем и емкости устройства.

RC цепочка

Например, есть электролитический конденсатор, узнать емкость которого можно по маркировке, где прописывается 6800 мкф 50в. Но что если устройство давно лежало без дела, а по надписи сложно определить его рабочее состояние? В этом случае лучше проверить его емкость, чтобы знать наверняка.

Для этого необходимо выполнить следующее:

  1. С помощью мультиметра измерить сопротивление резистора в 10 кОм. Например, оно получилось равно 9880 Ом.
  2. Подключаем блок питания. Мультиметр переводим в режим замера постоянного напряжения. Затем подключаем его к блоку питания (через его выводы). После этого в блоке устанавливается 12 вольт (на мультиметре должна появиться цифра 12,00 В). Если же не удалось отрегулировать напряжение в блоке питание, то тогда записываем те результаты, которые получились.
  3. С помощью конденсатора и резистора собираем электрическую RC-цепь. На схеме ниже указана простая RC-цепочка:Простая RC-цепь
  4. Закоротить конденсатор и подключить цепь к питанию. С помощью прибора еще раз определить напряжение, которое подается на цепь, и записать это значение.
  5. Затем необходимо высчитать 95% от полученного значения. К примеру, если это 12 Вольт, то это будет 11,4 В. То есть, за определенное время, которое равняется 3*RC, конденсатор получит напряжение в 11,4 В. Формула выглядит следующим образом:Изменение времени
  6. Осталось определить время. Для этого устройство раскорачиваем и с помощью секундомера производим отсчет. Определение 3*RC будет вычисляться таким образом: как только напряжение на устройстве будет равно 11,4 В, то это и будет означать нужное время.
  7. Производим определение. Для этого полученное время (в секундах) делим на сопротивление в резисторе и на три. Например, получилось 210 секунд. Эту цифру делим на 9880 и на 3. Получилось значение 0,007085. Это величина указывается в фарадах, или 7085 мкф. Допустимое отклонение может быть не более 20%. Если учитывать, что на изделии указано 6800 мкф, наши расчеты подтверждаются и укладываются в норматив.

А как определить емкость керамического конденсатора? В этом случае можно сделать определение с помощью сетевого трансформатора. Для этого RC-цепочку подсоединяем ко вторичной обмотке трансформатора, и его подсоединяют в сеть. Далее с помощью мультиметра осуществляется замер напряжения на конденсаторе и на резисторе. После этого необходимо сделать подсчеты: высчитывается ток, что проходит через резистор, затем его напряжение делится на сопротивление. Получается емкостное сопротивление Хс.

Расчет емкостного сопротивления

Если есть частота тока и Хс, можно определить емкость по формуле:

Расчет емкостной характеристики

Другие методики

Также емкость можно определить и с помощью баллистического гальванометра. Для этого используется формула:

Cx

  • Cq — баллистическая постоянная гальванометра;
  • U2 — показания вольтметра;
  • a2 — угол отклонения гальванометра.

Цепь с гальванометром

Определение значения методом амперметра вольтметра осуществляется следующим образом: измеряется напряжение и ток в цепи, после чего значение емкости определяется по формуле:

Метод амперметра-вольтметра

Напряжение при таком методе определения должно быть синусоидальным.

Амперметр и вольтметр в цепи

Измерение значения возможно и при помощи мостиковой схемы. В этом случае схема моста переменного тока указывается ниже:

Мостиковая схема

Здесь одно плечо моста образуется за счет элемента, который необходимо измерить (Cx). Следующее плечо состоит из конденсатора без потерь и магазина сопротивлений. Оставшиеся два плеча состоят из магазинов сопротивлений. Подключаем в одну диагональ источник питания, в другую – нулевой индикатор. И рассчитываем значение по формуле:

Расчет по мостиковой схеме

Напоследок рекомендуем просмотреть полезное видео по теме:

Это все, что мы хотели рассказать вам о том, как определить емкость конденсатора мультиметром. Надеемся, предоставленная информация была для вас полезной и интересной!

Как просто определить емкость конденсатора подручными средствами

Иногда, когда на конденсаторе отсутствует маркировка или нет доверия к указанным на его корпусе параметрам, требуется как-то узнать реальную емкость. Но как это сделать, не имея специального оборудования?

Конденсатор с неизвестной емкостью

Безусловно, если под рукой есть мультиметр с возможностью измерения емкости или C-метр с подходящим диапазоном измерения емкостей, то проблема перестает быть таковой. Но что же делать, если в наличии только простой бытовой мультиметр и какой-нибудь блок питания, а измерить емкость конденсатора необходимо здесь и сейчас? На помощь в этом случае придут известные законы физики, которые позволят с достаточной степенью точности измерить емкость.

Рассмотрим сначала простой способ измерения емкости электролитического конденсатора подручными средствами. Как известно, при заряде конденсатора от источника постоянного напряжения через резистор, имеет место закономерность, по которой напряжение на конденсаторе станет экспоненциально приближаться к напряжению источника, и в пределе когда-нибудь, наконец, его достигнет.

Но чтобы долго не ждать, можно задачу себе упростить. Известно, что за время, равное 3*RC, напряжение на конденсаторе в процессе зарядки достигнет 95% напряжения, приложенного к RC-цепочке. Значит, зная напряжение блока питания, номинал резистора, и вооружившись секундомером, можно легко измерить постоянную времени, а точнее — троекратную постоянную времени для большей точности, и вычислить затем емкость конденсатора по известной формуле.

Схема для определения емкости конденсатора

Для примера рассмотрим далее эксперимент. Допустим, есть у нас электролитический конденсатор, на котором присутствует какая-то маркировка, но мы ей не особо доверяем, так как конденсатор давно валялся в закромах, и мало ли высох, в общем нужно измерить его емкость. Например, на конденсаторе написано 6800мкф 50в, но нужно узнать точно.

Шаг №1. Берем резистор номиналом 10кОм, измеряем его сопротивление мультиметром, поскольку своему мультиметру в этом эксперименте мы будем изначально доверять. Например, получилось сопротивление 9840 Ом.

Шаг №2. Включаем блок питания. Поскольку мультиметру мы доверяем больше, чем калибровке шкалы (если таковая имеется) блока питания, переводим мультиметр в режим измерения постоянного напряжения, и подключаем его к выводам блока питания. Выставляем напряжение блока питания на 12 вольт, чтобы мультиметр точно показал 12,00 В. Если напряжение блока питания не регулируется, то просто замеряем его и записываем.

Шаг №3. Собираем RC-цепочку из резистора и конденсатора, емкость которого нужно измерить. Конденсатор закорачиваем на время так, чтобы его легко можно было раскоротить.

Шаг №4. Подключаем RC-цепочку к блоку питания. Конденсатор все еще закорочен. Измеряем мультиметром еще раз напряжение, подаваемое на RC-цепочку, и фиксируем это значение для верности на бумаге. К примеру, оно так и осталось 12,00 В, или таким же, каким было в начале.

Шаг №5. Вычисляем 95% от этого напряжения, например если 12 вольт, то 95% — это 11,4 вольта. Теперь мы знаем, что за время, равное 3*RC, конденсатор зарядится до 11,4 В.

Шаг №6. Берем в руки секундомер, и раскорачиваем конденсатор, начинаем одновременно отсчет времени. Фиксируем время, за которое напряжение на конденсаторе достигло 11,4 В, это и будет 3*RC.

Шаг №7. Производим вычисления. Получившееся время в секундах делим на сопротивление резистора в омах, и на 3. Получаем значение емкости конденсатора в фарадах.

Например: время получилось 220 секунд (3 минуты и 40 секунд). Делим 220 на 3 и на 9840, получаем емкость в фарадах. В нашем примере получилось 0,007452 Ф, то есть 7452 мкф, а на конденсаторе написано 6800 мкф. Таким образом, в допустимые 20% отклонение емкости уложилось, поскольку составило примерно 9,6%.

Но как быть с неполярными конденсаторами малых емкостей? Если конденсатор керамический или полипропиленовый, то здесь поможет переменный ток и знание о емкостном сопротивлении.

К примеру, есть конденсатор, емкость его предположительно несколько нанофарад, и известно, что в цепи переменного тока работать он может. Для выполнения измерений потребуется сетевой трансформатор со вторичной обмоткой, скажем, на 12 вольт, мультиметр, и все тот же резистор на 10 кОм.

Шаг №1. Собираем RC-цепь, и подключаем ее ко вторичной обмотке трансформатора. Затем включаем трансформатор в сеть.

Шаг №2. Измеряем мультиметром переменное напряжение на конденсаторе, затем — на резисторе.

Шаг №3. Производим вычисления. Сначала вычисляем ток через резистор, — делим напряжение на нем на значение его сопротивление. Поскольку цепь последовательная, то переменный ток через конденсатор точно такой же величины. Делим напряжение на конденсаторе на ток через резистор (ток через конденсатор такой же), получаем значение емкостного сопротивления Хс. Зная емкостное сопротивление и частоту тока (50 Гц), вычисляем емкость нашего конденсатора.

Например: на резисторе 7 вольт, а на конденсаторе 5 вольт. Мы посчитали, что ток через резистор в этом случае 700 мкА, следовательно и через конденсатор — такой же. Значит емкостное сопротивление конденсатора на частоте 50 Гц составляет 5/0,0007 = 7142,8 Ом. Емкостное сопротивление Xc = 1/6,28fC, следовательно C = 445 нф, то есть номинал 470 нф.

Описанные здесь способы являются весьма грубыми, поэтому применять их можно только тогда, когда других вариантов просто нет. В иных случаях лучше пользоваться специальными измерительными приборами.

голоса
Рейтинг статьи
Читайте так же:
Как варить алюминий обычной сваркой
Ссылка на основную публикацию
Adblock
detector