Hydratool.ru

Журнал "ГидраТул"
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ремонт компьютерных блоков питания

Ремонт компьютерных блоков питания

Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет — все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий:

  • Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
  • Отсос для припоя и (или) оплетка. Служат для удаления припоя.
  • Отвертка
  • Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
  • Мультиметр
  • Пинцет
  • Лампочка на 100Вт
  • Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX A – диодный мост, служит для преобразования переменного тока в постоянный B – силовые конденсаторы, служат для сглаживания входного напряжения Между B и C – радиатор, на котором расположены силовые ключи C — импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Визуальный осмотр

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

  • БП не запускается, отсутствует напряжение дежурного питания
  • БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
  • БП уходит в защиту,
  • БП работает, но воняет.
  • Завышены или занижены выходные напряжения

Предохранитель

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост

Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

Конденсаторы

Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Читайте так же:
Как правильно сварить полипропиленовые трубы своими руками

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Ремонт блоков питания

Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые, практически не возможно достать принципиальных схем.

Диоды и стабилитроны

Проверяются прозвонкой в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки

Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в «позвонке» р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Для проверки диодов ставим минусовой щуп мультиметра на центральную ногу, а плюсовым щупом тыкаем в боковые. Падение тока должно быть около 500мА, а в обратном направление должен быть разрыв.

Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.

Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно. Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.

Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Дроссель групповой стабилизации (ДГС)

Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.

Трансформаторы

Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.

Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора

После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой. Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервисный центр или магазин.

Чем заменить варистор в блоке питания

Учимся ремонтировать кинескопные, LED и ЖК телевизоры вместе.

03.11.2017 Lega95 1 Комментарий

Всем привет. На днях в ремонт принесли сгоревший компьютерный блок питания Zalman ZM500-GS. Со слов хозяина, компьютер перестал включаться после перепада напряжения.

Проверка неисправности блока питания

Для подтверждения неисправности, подключил блок питания к сети, а разъем ATX (самый широкий на 24 контакта) подключил к тестеру блоков питания. Диагноз подтвердился, блок питания не подавал признаков жизни.

Проверка работоспособности тестером для компьютерных блоков питания

Разборка блока питания и поиск неисправности

Ремонт начал с разборки, и проверки предохранителя. При проверке, мультиметр показал бесконечность, что свидетельствует о обрыве предохранителя.

Блок питания после разборки. Расположение предохранителя на плате.

Зачастую, сгоревший предохранитель является лишь следствием, а причину поломки предстоит еще найти. Для этих целей, я использовал лампу накаливания номиналом 100Вт, подкинув ее вместо предохранителя. В нормальном состоянии, она должна загореться (в момент зарядки сетевых конденсаторов), а потом притухнуть. В дежурном режиме, когда потребление блока питания небольшое, лампа может немного загораться, после чего погаснуть. Такое поведение будет циклично повторятся.

Если лампа ярко загорается, то это может говорить о том, что короткое замыкание в первичной цепи, или же на выходах блока питания есть излишняя нагрузка.

Подкинув лампу, та ярко загорелась.

Лампа накаливания ярко горит при подключении.

Что бы проверить, выдает ли блок питания какие то напряжения, я снова подключил тестер к его выходу. В итоге, тот показал присутствие выходных напряжений .

Выходные напряжения с блока питания

Это был хороший знак, осталось лишь определить причину повышенного потребления тока. Сначала, я было подумал на диодный мост, но в самом начале схемы,немного присмотревшись, я увидел подгоревший варистор. Его неисправность было тяжело заметить, так как он был закрыт термоизоляционной трубкой, сняв которую все стало на свои места. Варистор был прогоревший, и явно вышедший из строя.

Варистор после выпаивания с платы

После снятия термоизоляционной трубки все стало на свои места

Падение напряжения на варисторе. В идеале тестер не должен ничего показать.

Читайте так же:
Lm358 datasheet на русском

Информация о варисторах

Для новичков, немного расскажу о варисторах. Варистор — это такой тип резисторов, которые меняют свое сопротивление, в зависимости от напряжения, которое к них подается.

Покажу на примере.

Схема работы варистора при нормальном напряжении

Предположим, что в схеме установлен варистор, к примеру который начинает срабатывать от 270 вольт. Пока напряжение ниже данного значения, сопротивление варистора слишком велико, и напряжение свободно питает плату, минуя варистор.

Схема, как отрабатывает варистор при завышенном напряжении

При подаче около 300 вольт, сопротивление варистора резко уменьшается, после чего он начинает принимать всю нагрузку на себя. При этом, завышенное напряжение не попадает на схему, в чем и проявляется эффект защиты платы.

Когда варистор срабатывает, то вся нагрузка передается на предохранитель, после чего тот сгорает, и спасает плату от дальнейших перегрузок.

Так и случилось в моем примере. Варистор сгорел, чем спас плату блока пттания. Номинал варистора в моей плате был TVR10431. Это варистор, классификационное напряжение которого является 430 вольт. По даташиту, данный варистор начинает срабатывать при напряжении 270 вольт переменного тока.

Результат ремонта

Заменив предохранитель, и установив варистор с донора, блок питания был собран, и протестирован.

Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.

Скорее всего это произошло из-за скачков напряжения в сети.

При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.

Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт. Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. д.), а также из-за атмосферного электричества.

Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.

Стандартная схема подключения варистора

параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:

Принцип действия варистора

По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения. При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток. Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.

Маркировка варисторов

Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке. Например маркировка варисторов CNR:

CNR-07D390K , где:

  • CNR- серия, полное название CeNtRa металлоксидные варисторы
  • 07- диаметр 7мм
  • D – дисковый
  • 390 – напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
  • K – допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.

Как же найти на плате варистор?

По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.

На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.

VA1- это варистор, а синяя деталь рядом это конденсатор-С70.

Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.

После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание – на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.

Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF – плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.

Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.

Ещё обратите внимание, что большинство плат – двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.

После замены варистора остаётся только поставить новый предохранитель и установить плату на место.

Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.

Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:

Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.

Учимся ремонтировать кинескопные, LED и ЖК телевизоры вместе.

03.11.2017 Lega95 1 Комментарий

Всем привет. На днях в ремонт принесли сгоревший компьютерный блок питания Zalman ZM500-GS. Со слов хозяина, компьютер перестал включаться после перепада напряжения.

Проверка неисправности блока питания

Для подтверждения неисправности, подключил блок питания к сети, а разъем ATX (самый широкий на 24 контакта) подключил к тестеру блоков питания. Диагноз подтвердился, блок питания не подавал признаков жизни.

Читайте так же:
Алекс гайвер повер банк

Проверка работоспособности тестером для компьютерных блоков питания

Разборка блока питания и поиск неисправности

Ремонт начал с разборки, и проверки предохранителя. При проверке, мультиметр показал бесконечность, что свидетельствует о обрыве предохранителя.

Блок питания после разборки. Расположение предохранителя на плате.

Зачастую, сгоревший предохранитель является лишь следствием, а причину поломки предстоит еще найти. Для этих целей, я использовал лампу накаливания номиналом 100Вт, подкинув ее вместо предохранителя. В нормальном состоянии, она должна загореться (в момент зарядки сетевых конденсаторов), а потом притухнуть. В дежурном режиме, когда потребление блока питания небольшое, лампа может немного загораться, после чего погаснуть. Такое поведение будет циклично повторятся.

Если лампа ярко загорается, то это может говорить о том, что короткое замыкание в первичной цепи, или же на выходах блока питания есть излишняя нагрузка.

Подкинув лампу, та ярко загорелась.

Лампа накаливания ярко горит при подключении.

Что бы проверить, выдает ли блок питания какие то напряжения, я снова подключил тестер к его выходу. В итоге, тот показал присутствие выходных напряжений .

Выходные напряжения с блока питания

Это был хороший знак, осталось лишь определить причину повышенного потребления тока. Сначала, я было подумал на диодный мост, но в самом начале схемы,немного присмотревшись, я увидел подгоревший варистор. Его неисправность было тяжело заметить, так как он был закрыт термоизоляционной трубкой, сняв которую все стало на свои места. Варистор был прогоревший, и явно вышедший из строя.

Варистор после выпаивания с платы

После снятия термоизоляционной трубки все стало на свои места

Падение напряжения на варисторе. В идеале тестер не должен ничего показать.

Информация о варисторах

Для новичков, немного расскажу о варисторах. Варистор — это такой тип резисторов, которые меняют свое сопротивление, в зависимости от напряжения, которое к них подается.

Покажу на примере.

Схема работы варистора при нормальном напряжении

Предположим, что в схеме установлен варистор, к примеру который начинает срабатывать от 270 вольт. Пока напряжение ниже данного значения, сопротивление варистора слишком велико, и напряжение свободно питает плату, минуя варистор.

Схема, как отрабатывает варистор при завышенном напряжении

При подаче около 300 вольт, сопротивление варистора резко уменьшается, после чего он начинает принимать всю нагрузку на себя. При этом, завышенное напряжение не попадает на схему, в чем и проявляется эффект защиты платы.

Когда варистор срабатывает, то вся нагрузка передается на предохранитель, после чего тот сгорает, и спасает плату от дальнейших перегрузок.

Так и случилось в моем примере. Варистор сгорел, чем спас плату блока пттания. Номинал варистора в моей плате был TVR10431. Это варистор, классификационное напряжение которого является 430 вольт. По даташиту, данный варистор начинает срабатывать при напряжении 270 вольт переменного тока.

Результат ремонта

Заменив предохранитель, и установив варистор с донора, блок питания был собран, и протестирован.

Элементная база блоков питания

В блоках питания помимо использования обыкновенных резисторов используются два типа специализированных резисторов — Варистор и Термистор.
Также, кроме обыкновенных конденсаторов используются специализированные помехоподавляющие конденсаторы: конденсаторы типа Y и конденсаторы типа X (их еще называют конденсаторы класса защиты X/Y)

В качестве примера приведем кусок реальной схемы до выпрямительного мостика, хочется повторится – схема реальная, хотя впечатление такое, что этот шедевр — сборище пассивных элементов защиты от ВЧ помех со страниц какого то учебника по борьбе с помехами.

Рис. Пример реального участка схемы блока питания — фильтра от ВЧ помех.

Варистор

Варистор – полупроводниковый резистор, сопротивление которого изменяется при изменении приложенного напряжения. Основная задача варистора в блоках питания – защита цепей от перенапряжения.

Рис. Принцип работы варистора в блоках питания, увеличение скорости срабатывания предохранителя или защита от импульсных бросков напряжения.

Варистор включается параллельно входному напряжению 220В, и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал. В случае возникновения выброса по напряжению, сопротивление варистора резко падает и шунтирует защищаемые цепи, ток в этом состоянии может достигать нескольких тысяч ампер. Несмотря на свою эффективность варистор в блоках питания АТХ довольно редкий гость, чаще его можно увидеть в сетевых фильтрах или в некомпьютерных блоках питания.

Рис. Для увеличения скорости срабатывания защиты, предохранитель и варистор объеденяют вместе.

Обозначение варистора на плате.

VZ (Принтер)MV (Источник бесперебойного питания)ZNR (Блок питания АТХ)
MOV (Источник бесперебойного питания)Z (Блок питания светодиодного прожектора)DNR
фото отсутствуетфото отсутствуетфото отсутствует
RURVVAR
фото отсутствует
VDR

Обозначение варистора на схеме.

Рис. Условное обозначение варистора на схеме

Особенности применения варисторов.

  • Варисторы являются безинерционным элементом. Полностью восстанавливает свои свойства мгновенно, в результате чего чрезвычайно эффективен при борьбе с импульсными выбросами напряжения.
  • Количество импульсов прикладываемых к варистору ограничено, фактически это значит, что со временем варистор теряет свои свойства.

Терморезистор

Терморезистор – полупроводниковый резистор, сопротивление которого изменяется при изменении температуры.
Различают два вида терморезисторов
Термистор (NTC-термистор) — сопротивление терморезистора с повышением температуры уменьшается.
Позистор (PTC-позистор) — сопротивление терморезистора с повышением температуры увеличивается
Применение терморезисторов в блоках питания

Рис. Принцип работы NTC-термистора в блоках питания, мягкий пуск.
Основная задача термистора в блоках питания — ограничение пускового тока. При включении блока питания термистор имеет температуру окружающей среды и сопротивление в несколько Ом. Конденсатор выпрямителя в момент включения представляет из себя короткозамкнутую нагрузку, в цепи происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока через термистор, последний разогревается и его сопротивление падает почти до десятых долей Ома, и далее он не влияет на работу устройства. Происходит так называемый мягкий пуск.

Читайте так же:
Верстак своими руками из дерева фото чертежи

Обозначение термистора на плате.

THTHRTR
RTHRTPTC

Обозначение термистора на схеме.

Рис. Условное обозначение терморезистора на схеме

На практике может встречаться комбинация состоящая, из двух или более приведенных обозначений.

Рис. Пример комбинации при обозначении терморезистора

Особенности применения термисторов.

  • Термисторы являются инерционным элементом. Полностью восстанавливает свои свойства только через 5-10 мин. Фактически при кратковременном отключении питания, при повторном пуске термистор не работает как элемент защиты.
  • Выводы термистора являются радиаторами, необходимо оставлять выводы как можно длиннее.
  • Температура термистора в состоянии сопротивления близкого к нулю может доходить до 250 градусов, нежелательно устанавливать корпус термистора в непосредственной близости от других элементов.

Помехоподавляющие конденсаторы

Помехоподавляющие конденсаторы делятся на два типа X и Y, для подавления синфазной и противофазной составляющей помехи. Каждый тип для своего типа помехи.

Как практик, могу сказать, название помехи не играет большой роли на принцип борьбы с помехой. Как теоретик, лично я, всегда путаю термины синфазной и противофазной помехи между собой, поэтому дальше обе помехи мы будем разделять по принципу возникновения.

Конденсатор X типа

Конденсатор X типа – конденсатор для подавления помехи возникающей между фазой и нулем (не путать с заземлением). Задача Х конденсатора не пропускать помеху из внешней сети в блок питания, а так же не выпускать помеху созданную блоком питания во внешнюю сеть.

Рис. Принцип работы Х конденсатора.

Обозначение X конденсатора на плате.

CxС

Обозначение X конденсатора на схеме.

Обосначается как обычный конденсатор, с суффиксом x, например Cx

Рис. Обозначение Х конденсатора на схеме .

Особенности применения Х конденсаторов.

  • Конденсатор невозгораемый при любых условиях
  • Неисправность конденсатора не приведет к поражению электрическим током.
  • Емкость Х конденсатора, чем больше — тем лучше.
  • X2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 2.5кВ.
  • Какая бы не была емкость Х конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Конденсатор Y типа

Конденсатор Y типа – конденсатор для подавления помехи возникающей между

  • фазой и землей (не путать с нулем)
  • нулем и землей.

Рис. Принцип работы Y конденсатора.

Обозначение Y конденсатора на плате.

Нет изображенияНет изображения
CYС

Обозначение Y конденсатора на схеме.

Обозначается как обычный конденсатор, с суффиксом Y, например Cy рядом с номиналом может стоять напряжение.

Рис. Обозначение Y конденсатора на схеме .

Особенности применения Y конденсаторов.

  • Конденсатор в случае пробоя уходит в обрыв
  • Неисправность конденсатора может привести к поражению электрическим током.
  • Емкость Y конденсатора, чем меньше — тем лучше.
  • Y2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 5кВ.
  • Y конденсатор можно применять вместо X конденсатора, наоборот нет.
  • Какая бы не была емкость Y конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Быстродействующие диоды.

В блоках питания используются два типа выпрямительных диодов – общего назначения и импульсные. Импульсные диоды можно отнести к быстродействующим.

Сгорел варистор

Привет. В теме полный ноль, но обычно ищу истину сам, такая натура).Умерла газовая колонка.На плате нашел сгоревший пред.на 2 А и затем увидел сгоревший с одной стороны варистор.Маркировка как раз на этой стороне.Под ним на плате написано VDR1.Почему сгорел варистор? Что делать? На что менять? Или тащить это г.в сервис.Паять умею.Спасибо.На фото в центре голубая с черным таблетка.

Комментарии 84

у меня сдох от повышения напряжения в сети. выпаял, заменил пред — и всё работает. потом прикупил варистор и запаял обратно.

Да, так и есть.Уже сделал, работает.

Допуск на колебания сети — +20% и -15%, если взять амплитудное напряжение в розетке 310 вольт то 400 вольт это будет примерно 30%. Так что ставьте варистор на 410 вольт и живите спокойно. Здесь вам правильно советуют первое включение сделать через лампу накаливания

Спасибо, но вот про лампу я в полной темноте)

Допуск на колебания сети — +20% и -15%, если взять амплитудное напряжение в розетке 310 вольт то 400 вольт это будет примерно 30%. Так что ставьте варистор на 410 вольт и живите спокойно. Здесь вам правильно советуют первое включение сделать через лампу накаливания

Это из за перенапряжения в сети! Откуси его временно поставь новый предохранитель на место и пользуйся. Но не забудь купить новый и запаять как можно быстрее так как своей жизнью он спас тебе саму колонку. Если напряжение скакнет без него — колонке хана!

Точнее надо его выпаять прежде чем проверять начьнеш, может через него прозваниваться кз.

Первым делом проверь на пробой диоды, силовой транзистор или микросхему которые в бп стоят, вздутость фильтрующего конденсатора, если все цело ставь предохранитель, выпаяй варистор совсем и включай через лампу ватт на 30, если признаки жизни колонка покажет, только тогда ставь другой варистор на напряжение 275-400в, пользуйся и радуйся жизни.
А стабилизаторы особенно механические просто не способны отследить мгновенного скачка напряжения, он тупо не успеет переключиться, надо или тиристорый или вообще от бесперебойника питать, только опять же не любой подойдет.

Вообще для газовых катлов необходим стабилизатор напряжения, у многих в инструкции написано об этом.

Да хрен его знает.щас не могу посмотреть.

скорей всего стоял 14n391k но может быть 14k471 последниие 3 цифры напряжение пробоя

Выкуси его, замени предохранитель и включай. Если всё исправно — работать будет. Потом можно в радиодеталях купить как советует evgeni-khudyakov для спокойствия. Если не работает — мастерам в ремонт.

evgeni-khudyakov

скорей всего стоял 14n391k но может быть 14k471 последниие 3 цифры напряжение пробоя

Варистор спасает входные цепи от скачков высокого напряжения, если импульс слишком мощный то сгорает. Ставьте любой варистор на 400 вольт . У вас или гроза была или на подстанции шалили электрики после третьего стакана. Еще не помешает вам залезть в щиток на предмет плохих контактов особенно земляного провода. Если земля плохая то вам в сеть проскакивает 380 вольт

Читайте так же:
Какие провода подключать к магнитоле

Спасибо.400 не много?

В розетке не 220 вольт как все думают а 310 вольт, так что варистор на 410 вольт будет резать импульсы выше 410 вольт

Спасибо.400 не много?

Можно поставить 270, чтобы спокойней было.

Ставь — рабочее напряжение +20%. если 220 то ставь на 250-260В. стоит копейки но блок питания спасет если что.

проблема скорее всего — напряжение в сети.
смотри внимательней! если есть микросхема проверь.
Обычно горит сопротивление на выходе далее дроссель (если есть) потом диоды, варистор, и микросхема которая организовывает питание.
А варистор ставь как и говорили по размеру.

проблема скорее всего — напряжение в сети.
смотри внимательней! если есть микросхема проверь.
Обычно горит сопротивление на выходе далее дроссель (если есть) потом диоды, варистор, и микросхема которая организовывает питание.
А варистор ставь как и говорили по размеру.

У меня при подаче 380 херанули варисторы и преды на входе. А в иксбоксовом БП шота еще искануло, но та4 и не нашел) Электрик подцепил круто, когда постоянуу ставил и врубил все автоматы. Сцуко )

Бросок напряжения, а варистор защитил схему… Ищи варистор на 275 вольт.Заодно и предохранитель заменить.

Спасибо.Как определили, что 275?Интересно просто.

Уже понимаю, что надо 400.Спасибо.

evgeni-khudyakov

Нормально. Не мало. 250 было бы мало.

средне выпрямленное напряжение после выпрямительного моста с фильтрующим конденсатором равно 290в

Зачем нам оно? Варистор ставиться ДО выпрямителя обычно.

evgeni-khudyakov

В самый раз.6 импульсных источников питания у меня работают много лет круглосуточно с таким варистором.Если варистор ставить с более высоким номиналом, то повышается вероятность выхода из строя источника питания.Вам проще и дешевле будет как- заменить варистор и предохранитель или менять весь источник питания, который не смог спасти варистор из-за более высокого напряжения пробоя?

Спасибо.Как определили, что 275?Интересно просто.

Напряжение сети по 230 вольт, допуск +/- 8 % = 211,6 — 248,4 В. плюс небольшой запас чтобы не срабатывал при завышении напряжения сети в пределах нормы, но отсекал выше них.

Все понял, благодарю.

Напряжение сети по 230 вольт, допуск +/- 8 % = 211,6 — 248,4 В. плюс небольшой запас чтобы не срабатывал при завышении напряжения сети в пределах нормы, но отсекал выше них.

открой схему любого бп да хоть сетевой фильтр раскрути для компа и погляди номинал тем и закончится спор

Нахрена мне смотреть схемы корявых китайских подделок? И к тому же правила этики предусматривают обращение к незнакомым или малознакомым людям на "Вы", не зависимо от возраста собеседников! А по теме: подумайте логически — если например перемкнёт диодный мост (пробой) или электролит? Что даст варистор после него? Везде где я смотрел цепь состоит из:
1. Предохранитель
2. ВАРИСТОР
3. Прочая требуха…
С Уважением!

извиняюсь что обратился на не вы . В китайских подделках ни варисторов ни фильтров ни чего нету. Хорошо хоть предохранитель ставят Да и тория вам не нужна в последнем посте все прекрасно описано хотел уже то же самое написать

это в дешевых кЕтайских. В дорогих кИтайских все сделано по уму

evgeni-khudyakov

извиняюсь что обратился на не вы . В китайских подделках ни варисторов ни фильтров ни чего нету. Хорошо хоть предохранитель ставят Да и тория вам не нужна в последнем посте все прекрасно описано хотел уже то же самое написать

Мне Ваши извинения не к чему. И не Вам решать: надо мне теория или нет!

Спасибо.Как определили, что 275?Интересно просто.

из опыта конструирования и изготовления импульсных источников питания

предпоследняя таблица www.proton-impuls.ru/stati/opvv.htm варистор на 275 в-максимально допустимое длительное действующее переменное напряжение 175в максимально допустимое длительное постоянное напряжение 225в практика от теория всегда рядом .может ре конструирования а ремонта не в каждом ств тюнере телевизоре двд и так далее увидите варистор производитель экономит -а производитель маде ин китай

В случае с 275v варистор имеет обозначение как 431, а 431 это классификационное напряжение при токе в 1 ма через варистор. Максимальное допустимое действующее переменное напряжение у этого прибора 275 вольт. Нас в данном случае не интересует постоянное ). Главная функция защита о бросков сети )

evgeni-khudyakov

предпоследняя таблица www.proton-impuls.ru/stati/opvv.htm варистор на 275 в-максимально допустимое длительное действующее переменное напряжение 175в максимально допустимое длительное постоянное напряжение 225в практика от теория всегда рядом .может ре конструирования а ремонта не в каждом ств тюнере телевизоре двд и так далее увидите варистор производитель экономит -а производитель маде ин китай

Повторяяююю//////
В случае с 275v варистор имеет обозначение как 431, а 431 это классификационное напряжение при токе в 1 ма через варистор. Максимальное допустимое действующее переменное напряжение у этого прибора 275 вольт. Нас в данном случае не интересует постоянное ). Главная функция защита о бросков сети )
\\\\\\\\\
Вам что, трудно внимательно посмотреть на вашу таблицу ? Внимательно ее изучите ))))

посмотрите в самом начале на время когда я писал я указал конкретно маркировку варистора а то что вы пишете тут ни кто не поймет действующее=среднеквадротичному что есть еще амплитудное напряжение продавцы тоже не знают им давай марку вот человек и купил бы варистр с маркировкой 271 результат работает но недолго .в теме написано В теме полный ноль Паять умею ———надо указать маркировку варистора а не проходить курс электротехники

Защита от перенапряжения. Ставь похожий по параметрам, меняй предохранитель и вперед. В принципе и без него работать будет только это будет последний шанс для блока питания при следующим скачке

Ок, спасибо.Стоит стабилизатор, но как видно не спасает.Почему?

Не спасает потому, что не должен. Он тоже имеет допустимый предел входного напряжения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector