Hydratool.ru

Журнал "ГидраТул"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Соотношения между числами твердости

Соотношения между числами твердости

Твердостью металла называют его свойство оказывать сопротивление пластической деформации при контактном воздействии стандартного тела-наконечника на поверхностные слои материала.

Испытание на твердость — основной метод оценки качества термообработки изделия.

Определение твердости по методу Бринелля. Метод основан на том, что в плоскую поверхность под нагрузкой внедряют стальной шарик. Число твердости НВ определяется отношением нагрузки к сферической поверхности отпечатка.

Метод Роквелла (HR) основан на статическом вдавливании в испытываемую поверхность наконечника под определенной нагрузкой. В качестве наконечников для материалов с твердостью до 450 HR используют стальной шарик. В этом случае твердость обозначают как HRB. При использовании алмазного конуса твердость обозначают как HRA или HRC (в зависимости от нагрузки).

Твердость по методу Виккерса (HV) определяют путем статического вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды. При испытании измеряют отпечаток с точностью до 0,001 мм при помощи микроскопа, который является составной частью прибора Виккерса.

Метод Шора. Сущность данного метода состоит в определении твердости материала образца по высоте отскакивания бойка, падающего на поверхность испытуемого тела с определенной высоты. Твердость оценивается в условных единицах, пропорциональных высоте отскакивания бойка.

Числа твердости HRC для некоторых деталей и инструментов

Детали и инструментыЧисло твердости HRC
Головки откидных болтов, гайки шестигранные, рукоятки зажимные33. 38
Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона35. 40
Шлицы круглых гаек36. 42
Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам40. 45
Пружинные и стопорные кольца, клинья натяжные45. 50
Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги50. 60
Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса56. 60
Рабочие поверхности калибров — пробок и скоб56. 64
Копиры, ролики копирные58. 63
Втулки кондукторные, втулки вращающиеся для расточных борштанг60. 64

Таблица соотношений между числами твердости по Бринеллю, Роквеллу, Виккерсу, Шору

Указанные значения твердости по Роквеллу, Виккерсу и Шору соответствуют значениям твердости по Бринеллю, определенным с помощью шарика диаметром 10 мм.

Твердость металлов

Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:

  • износостойкость металла;
  • возможность обработки резанием, шлифованием;
  • сопротивляемость местному давлению;
  • способность резать другой материал и прочие.

Твердость металлов

На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.

Понятие твердости

Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).

Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.

После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.

В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.

Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.

Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.

Прилагаемая нагрузка может прилагаться:

  • вдавливанием;
  • царапанием;
  • резанием;
  • отскоком.

Машиностроительные предприятия на данный момент для определения твердости материалов используют методы Бринелля, Роквелла, Виккерса, а также метод микротвердости.

На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.

Единицы измерения твердости

Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.

Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.

Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:

  • сплавы железа – 30 кгс/мм2;
  • медь и никель – 10 кгс/мм2;
  • алюминий и магний – 5 кгс/мм2.

Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.

Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.

В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.

Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.

Методика отображает тип индентора и прилагаемую к нему нагрузку.

Тип шкалыИнструментПрилагаемая нагрузка, кгс
АКонус из алмаза, угол вершины которого 120°50-60
ВШарик 1/16 дюйма90-100
СКонус из алмаза, угол вершины которого 120°140-150

В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.

Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.

Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.

К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:

0,196 — нагрузка на наконечник, Н;

2800 – численное значение твердости, Н/мм 2 .

Твердость основных металлов и сплавов

Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.

Цветные металлы

Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.

Черные металлы

Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.

Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.

HBHVHRCHRAHSD
2282402060.736
2602752462.540
280295296544
32034034.567.549
360380397054
41544044.57361
4504804774.564
480520507668
500540527773
535580547878

Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D 2 -d 2 ),

  • где
    Р – прикладываемая нагрузка, кгс;
  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм.
    Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:
    сплавы из железа — 30D 2 ;
    медь и ее сплавы — 10D 2 ;
    баббиты, свинцовые бронзы — 2,5D 2 .

Условное изображение принципа испытания

Условное изображение принципа испытания

Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.

Метод измерения твердости по Роквеллу

Метод измерения твердости по Роквеллу

Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h0.

Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.

Метод Виккерса

Математическая формула для расчета:
HV=0.189*P/d 2 МПа
HV=1,854*P/d 2 кгс/мм 2
Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.

Метод Шора

Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.

Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.

После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.

d, ммHBHRAHRCHRB
2,371285,166,4
2,560181,159,3
3,041572,643,8
3,530266,732,5
4,022961,82298,2
5,014377,4
5,213172,4

Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ ЦЕЛЬ РАБОТЫ

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ ЦЕЛЬ РАБОТЫ Усвоить понятие твердости, изучить сущность ее определения различными методами. Научиться самостоятельно, измерять твердость наиболее распространенными методами. ПРИБОРЫ И МАТЕРИАЛЫ Твердомер ТД-32, эталонные бруски известной твердости, опытные образцы, наглядные пособия и справочные материалы.

ОСНОВНЫЕ ПОЛОЖЕНИЯ Под твердостью материала понимают его способность сопротивляться пластической или упругой деформации при внедрении в него более твердого тела (индентора). Этот вид механических испытаний не связан с разрушением металла и, кроме того, в большинстве случаев не требует приготовления специальных образцов. Все методы измерения твердости можно разделить на две группы в зависимости от вида движения индентора: статические методы и динамические. Наибольшее распространение получили статические методы определения твердости. Статическим методом измерения твердости называется такой, при котором индентор медленно и непрерывно вдавливается в испытуемый металл с определенным усилием. К статическим методам относят следующие: измерение твердости по Бринеллю, Роквеллу и Виккерсу (рис. 1).

Рис. 1. Схема определения твердости: а) по Бринеллю; б) по Роквеллу; в) по Виккерсу При динамическом испытании контролируется величина отскока испытательного инструмента от поверхности испытываемого образца. К динамическим методам относят следующие: твердость по Шору, по Польди. 1

ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО БРИНЕЛЛЮ Сущность метода заключается в том, что шарик (стальной или из твердого сплава) определенного диаметра под действием усилия, приложенного перпендикулярно поверхности образца, в течение определенного времени вдавливается в испытуемый металл (рис. 1а, рис. 2). Величину твердости по Бринеллю определяют исходя из измерений диаметра отпечатка после снятия усилия.

Рис. 2. Схема испытаний на твердость по Бринеллю При измерении твердости по Бринеллю применяются шарики (стальные или из твердого сплава) диаметром 1,0; 2,0; 2,5; 5,0; 10,0 мм. При твердости металлов менее 450 единиц для измерения твердости применяют стальные шарики или шарики из твердого сплава. При твердости металлов более 450 единиц — шарики из твердого сплава. Величину твердости по Бринеллю рассчитывают как отношение усилия F, действующего на шарик, к площади поверхности сферического отпечатка А: F 2F (1) HB (HBW) = = A πD(D − D 2 − d 2 где НВ – твердость по Бринеллю при применении стального шарика; (HBW твердость но Бринеллю при применении шарика из твердого сплава), МПа (кгс); F – усилие, действующее на шарик, Н (кгс); А – площадь поверхности сферического отпечатка, мм2; D – диаметр шарика, мм; d – диаметр отпечатка, мм. Одинаковые результаты измерения твердости при различных размерах шариков получаются только в том случае, если отношения усилия к квадратам диаметров шариков остаются постоянными. Исходя из этого, усилие на шарик необходимо подбирать по следующей формуле:

Диаметр шарика D и соответствующее усилие F выбирают таким образом, чтобы диаметр отпечатка находился в пределах:

0,24 ⋅ D ≤ d ≤ 0,6 ⋅ D

Если отпечаток на образце получается меньше или больше допустимого значения d, то нужно увеличить или уменьшить усилие F и произвести испытание снова. Коэффициент К имеет различное значение для металлов разных групп по твердости. Численное, же значение его должно быть таким, чтобы обеспечивалось выполнение требования, предъявляемого к размеру отпечатка (3). Толщина образца должна не менее, чем в 8 раз превышать глубину отпечатка. ПОСЛЕДОВАТЕЛЬНОСТЬ ИЗМЕРЕНИЯ ТВЕРДОСТИ ПО БРИНЕЛЛЮ Подготовка образца, выбор условий испытания, получение отпечатка, измерение отпечатка и определение числа твердости производится в строгом соответствии ГОСТ 9012-59. Необходимые для замера твердости значения выбираются из таблиц этого ГОСТа. Таблица 1.Условия испытания металлов на твердость по Бринеллю Металлы

Твердость HB, кгс/кв.мм

Выдержка Толщина Диаметр Соотношение Нагрузка под образца, шарика между P и D^2 P, кгс нагрузкой, мм D, мм с 6-3 10 3000 P = 30 D^2 10 4-2 5 750 Менее 2 2,5 187,5 Более 6 10 1000 P = 10 D^2 10 6-3 5 250 Менее 3 2,5 62,5 6-3 10 3000 P = 30 D^2 30 4-2 5 750 Менее 2 2,5 187,5 9-3 10 1000 P = 10 D^2 30 6-3 5 250 2-3 2,5 62,5 Более 6 10 250 P = 2,5 D^2 60 6-3 5 62,5 Менее 3 2,5 15,6

Число твердости по Бринеллю, измеренное при стандартном испытании (D = 10мм, P = 3000 кгс), записывается так: HB 350. Если испытания проведены при других условиях, то запись будет иметь следующий вид: HB 5/250/30-200, что означает – число твердости 200 получено при испытании шариком диаметром 5 мм под нагрузкой 250 кгс и длительности нагрузки 30 с. При измерении твердости по методу Бринелля необходимо выполнять следующие условия: 3

• образцы с твердостью выше HB 450 кгс/мм2 (4500 МПа) испытывать запрещается; • поверхность образца должна быть плоской и очищенной от окалины и других посторонних веществ; • диаметры отпечатков должны находиться в пределах 0,2D≤d≤0,6D; • образцы должны иметь толщину не менее 10 – кратной глубины отпечатка (или менее диаметра шарика); • расстояние между центрами соседних отпечатков и между центром отпечатка и краем образца должны быть не менее 4d. Значение К выбирают в зависимости от металла и его твердости в соответствии с табл. 2. Таблица 2.Испытание твердости по Бринеллю Диаметр шарика D, мм

Прикладываемое усилие F, Н K=F/D2 30 29420 7355 1839 294,2

10 5 2,5 1 Диапазон твердости HB Измеряются

10 9807 2452 612,9 98,1

5 4903 1226 306,5 49,0

2,5 2452 612,9 153,2 24,5

1 980,7 245,2 61,3 9,81

450НВ), например закаленных сталей. Измеренную твердость обозначают HRC. Пределы измерения твердости по этой шкале 20 — 67. Таблица 3. Шкалы для определения твердости по Роквеллу Шкала Обозначение

Нагрузка, кг P0 P1 P2

Для особо твердых материалов Стальной Для относительно мягких 10 90 100 закаленный шарик материалов Для относительно твердых Алмазный конус 10 140 150 материалов Алмазный конус

ПОСЛЕДОВАТЕЛЬНОСТЬ ИЗМЕРЕНИЯ ТВЕРДОСТИ ПО РОКВЕЛЛУ Шкалу испытания (А, В или С) и соответствующие ей условия испытания (вид наконечника, общее усилие) выбирают в зависимости от предполагаемого интервала твердости испытуемого материала по табл. 4. Таблица 4.Выбор нагрузки и наконечника для испытания твердости по Роквеллу 5

Примерная твердость по Виккерсу

Обозна чение шкалы

60 – 240 240 – 900 390 – 900

Стальной шарик Алмазный конус То же

Общее Обозначени Допускае усилие е твердости мые , кгс по пределы Роквеллу шкалы 100 150 60

25 – 100 20 – 67 70 – 85

Измерение твердости по Роквеллу осуществляется в строгом соответствии ГОСТ 9013-59. Данные замеров занести в протокол. ПРОТОКОЛ ИСПЫТАНИЙ Марка металла

Обозначение Вид шкалы наконечника

Общее усилие, кгс

Результаты Примечание измерения

ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО ВИККЕРСУ При испытании на твердость по методу Виккерса в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине α=1360 (Рис. 1.а). После снятия нагрузки вдавливания измеряется диагональ отпечатка d1. Число твердости по Виккерсу HV подсчитывается как отношение нагрузки Рк площади поверхности пирамидального отпечатка М:

α 2 = 1.854 P d12

Число твердости по Виккерсу обозначается символом HV с указанием нагрузки P и времени выдержки под нагрузкой, причем размерность числа твердости (кгс/мм2) не ставится. Продолжительность выдержки индентора под нагрузкой принимают для сталей 10 – 15с, а для цветных металлов – 30с. Например, 450 HV10/15 означает, что число твердости по Виккерсу 450 получено при P = 10кгс (98,1 н), приложенной к алмазной пирамиде в течение 15с. Преимущества метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материалы более высокой твердости из-за применения алмазной пирамиды. МИКРОТВЕРДОСТЪ. Метод стандартизован (ГОСТ 9450-76). Микротвердость определяют вдавливанием в поверхность образца алмазной пирамиды при небольших 6

нагрузках (0,05 — 5 Н) и измерением диагонали отпечатка. Число твердости Н определяют по той же формуле, что и вычисление числа твердости по Виккерсу. Методом определения микротвердости оценивают твердость отдельных зерен, структурных составляющих, тонких слоев или тонких деталей. Измерение микротвёрдости имеет целью определить твёрдость отдельных зерен, фаз и структурных составляющих сплава (а не «усредненную» твёрдость, как при измерении макротвёрдости). В данном случае объём, деформируемый вдавливанием, должен быть меньше объёма (площади) измеряемого зерна. Поэтому прилагаемая нагрузка выбирается небольшой. Кроме того, микротвёрдость измеряют для характеристики свойств очень малых по размерам деталей. У полимерных материалов измерение твердости даёт меньше информации о их свойствах, так как между твёрдостью и прочностью этих материалов нет определенной зависимости. Результаты измерений являются лишь дополнительной характеристикой свойств полимерных материалов. Значительное влияние на результаты испытаний твёрдости оказывает состояние поверхности измеряемого материала. Если поверхность неровная — криволинейная или с выступами, то отдельные участки в различной степени участвуют в сопротивлении вдавливанию и деформации, что приводит к ошибкам в измерении. Чем меньше нагрузка для вдавливания, тем более тщательно должна быть подготовлена поверхность. Она должна представлять шлифованную горизонтальную площадку, а для измерения микротвердости — полированную (в этом случае при изготовлении шлифа нельзя допускать наклепа в поверхностном слое). Измеряемая поверхность должна быть установлена горизонтально, т. е. перпендикулярно действию вдавливаемого тела. Противоположная сторона образца также должна быть зачищена и не иметь окалины, так как последняя при нагружении образца сминается, что искажает результаты измерения. ИСПЫТАНИЕ НА ТВЕРДОСТЬ МЕТОДОМ УДАРНОГО ОТПЕЧАТКА Метод основан на внедрении в поверхности испытуемого объекта твердосплавного конического индентора (для испытания стали с твердостью

Метод Бринелля

Метод Бриннеля — один из основных методов определения твёрдости.

Этот метод относится к методам вдавливания. Испытание проводится следующим образом: вначале дают небольшую предварительную нагрузку для установления начального положения индентора на образце, затем прилагается основная нагрузка, образец выдерживают под её действием, измеряется глубина внедрения, после чего основная нагрузка снимается. При определении твёрдости методом Бринелля, в отличие от метода Роквелла, измерения производят до упругого восстановления материала. Индентор (полированный закалённый стальной шарик) вдавливают в поверхность испытуемого образца (толщиной не менее 4 мм) с регламентированным усилием. Через 30 с после приложения нагрузки измеряют глубину отпечатка. В другом варианте усилие прилагается до достижения регламентированной глубины внедрения.

Твёрдость по Бринеллю HB рассчитывается как «приложенная нагрузка», делённая на «площадь поверхности отпечатка»:

,

где — приложенная нагрузка, H;

— диаметр шарика, мм;

— диаметр отпечатка, мм,

,

где — глубина внедрения индентора.

Нормативными документами определены диаметры индентора, время экспозиции, глубина внедрения индентора.

  • В России регламентированные нагрузки 49 Н, 127 Н, 358 Н, 961 Н, диаметр шарика 5 мм, глубины внедрения от 0,13 до 0,35 мм. В разных спецификациях эти значения различны.
  • Наиболее распространённые диаметры шарика — 10, 5, 2,5 и 1 мм и нагрузки 187,5 кгс, 250 кгс, 500 кгс, 1 000 кгс и 3 000 кгс.
  • Для выбора диаметра шарика обычно используют следующее правило: диаметр отпечатка должен лежать в пределах 0,2—0,7 диаметра шарика.
  • В методиках ISO и ASTM объединены метод с одним шариком и разными нагрузками и метод с применением разных шариков, а также дана формула вычисления твёрдости, не зависящей от нагрузки.

Твёрдость по шкале Бринелля выражают в кгс/мм². Для определения твёрдости по методу Бринелля используют различные твердометры, как автоматические, так и ручные.

Таблица: Типичные значения твёрдости бринелль для различных материалов
МатериалТвёрдость
Мягкое дерево, например сосна1,6 HBS 10/100
Твёрдое деревоот 2,6 до 7,0 HBS 10/100
Алюминий15 HB
Медь35 HB
Дюраль70 HB
Мягкая сталь120 HB
Нержавеющая сталь250 HB
Стекло500 HB
Инструментальная сталь650—700 HB
Преимущества и недостатки

Недостатки

  • Метод можно применять только для материалов с твердостью до 450 HB, если применять стальной закаленный шарик. Как альтернатива, применяют шарики из твёрдого сплава на основе карбида вольфрама (WC), это позволяет повысить верхний предел измерения твёрдости до 600 HBW.
  • Твёрдость по Бринеллю зависит от нагрузки, так как изменение глубины вдавливания не пропорционально изменению площади отпечатка.
  • При вдавливании индентора по краям отпечатка из-за выдавливания материала образуются навалы и наплывы, что затрудняет измерение как диаметра, так и глубины отпечатка.
  • Из-за большого размера тела внедрения (шарика) метод неприменим для тонких образцов.

Преимущества

  • Зная твёрдость по Бринеллю, можно быстро найти предел прочности и текучести материала, что важно для прикладных инженерных задач:
    Для стали

    где — предел прочности.

    где — предел текучести.
    Для алюминиевых сплавов

    Для медных сплавов
  • Так как метод Бринелля — один из самых старых, накоплено много технической документации, где твёрдость материалов указана в соответствии с этим методом.
  • Данный метод является более точным по сравнению с методом Роквелла на более низких значениях твёрдости (ниже 30 HRC).
  • Также метод Бринеля менее критичен к чистоте подготовленной под замер твёрдости поверхности.
Перевод результатов измерения твёрдости различными методами

Результаты измерения твёрдости по методу Бринелля могут быть переведены с помощью таблиц в единицы твёрдости по методам Виккерса и Роквелла. В свою очередь, измерения твёрдости двумя последними методами могут быть переведены в единицы твёрдости по методу Бринелля. Следует отметить, что таблицы перевода в разных нормативных документах отличаются.

В каких единицах измеряется твердость металла. Нормы испытания на твердость по бринеллю

На каждой выставке, независимо от места проведения, находится один или несколько посетителей, которые высказывают явное недовольство по поводу недостаточной твердости стали наших ножей. В качестве аргументов они приводят собственное мнение, слова других продавцов («а вот там нам сказали, что у них твердость – 90!»), мнение знакомых и собеседников на форумах. Время от времени встречаются, мягко говоря, оригиналы, заявляющие: «Докажите твердость своих изделий – ударьте сильно друг об друга лезвиями, а который останется без следа, тот нож я куплю!»

Определимся с терминами

Чаще всего, эти господа не представляют, о чем именно они говорят. В частности, плохо представляют значение термина твердость у металлов и сплавов, а также не ориентируются в единицах измерения твердости. Напомним себе и остальным, что такое твердость стали ножа, в чем и как измеряется твердость стали ножа, и на что значение твердости стали ножа влияет.

По данным Википедии, твердость — свойство материала сопротивляться проникновению в него другого, более твердого тела. Твердость определяется как отношение величины нагрузки к площади или объему поверхности отпечатка. Различают поверхностную и объемную твердость:

  • поверхностная твердость — отношение нагрузки к площади поверхности отпечатка;
  • объемная твердость — отношение нагрузки к объему отпечатка.

Различают также восстановленную и невосстановленную твердость. Восстановленная твердость определяется как отношение нагрузки к площади или объему отпечатка, а невосстановленная твердость определяется как отношение силы сопротивления внедрению более твердого материала к площади или объему внедренной в материал части более твердого тела.

Твердость измеряют в трех диапазонах: макро, микро, нано. Макродиапазон регламентирует величину нагрузки на внешнее, более твердое тело от 2 Н до 30 кН. Микродиапазон регламентирует величину нагрузки на более твердое тело до 2 Н и глубину внедрения более твердого тела больше 0,2 мкм. Нанодиапазон регламентирует только глубину внедрения более твердого тела, которая должна быть меньше 0,2 мкм.

Измеряемая твердость, прежде всего, зависит от нагрузки, прикладываемой к более твердому телу. Такая зависимость получила название размерного эффекта, в англоязычной литературе — indentation size effect. Характер зависимости твердости от нагрузки определяется формой более твердого тела (индентора):

  • для сферического индентора — с увеличением нагрузки твердость увеличивается — обратный размерный эффект (reverse indentation size effect);
  • для индентора в виде пирамиды Виккерса или Берковича — с увеличением нагрузки твердость уменьшается — прямой или просто размерный эффект (indentation size effect);
  • для сфероконического индентора (типа конуса для твердомера Роквелла) — с увеличением нагрузки твердость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для сфероконической части индентора).

Косвенно твердость также может зависеть от:

  • Межатомных расстояний
  • Координационного числа — чем выше число, тем выше твердость
  • Валентности
  • Природы химической связи
  • От направления (например, минерал дистен — его твердость вдоль кристалла равна 4, а поперек — 7)
  • Хрупкости и ковкости
  • Гибкости — минерал легко гнется, изгиб не выпрямляется (например, тальк)
  • Упругости — минерал сгибается, но выпрямляется (например, слюды)
  • Вязкости — минерал трудно сломать (например, жадеит)
  • Спайности

и ряда других физико-механических свойств материала.
Наиболее твердыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода — лонсдейлит, на 58 % превосходящий по твердости алмаз и фуллерит (примерно в 2 раза тверже алмаза). Однако практическое применение этих веществ пока маловероятно. Самым твердым из распространенных веществ является алмаз (10 единиц по шкале Мооса).

Чем измеряется твердость?

Твердость твердостью, но нам важнее понять, что означают заветные цифры, которые так ценятся любителями ножей! Дело в том, что для определения твердости применяются разные методы измерения. И для каждого метода измерения твердости существует своя шкала измерения твердости.

Методы определения твердости по способу приложения нагрузки делятся на статические и динамические (ударные).

Метод Бринелля — твердость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твердость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причем площадь отпечатка берется как площадь части сферы, а не как площадь круга (так измеряется твердость по Мейеру). Число твердости по Бринеллю по ГОСТ 9012-59 записывают без единиц измерения. Твердость, определенная по этому методу, обозначается HB, где H = hardness (твердость, англ.), B — Бринелль;

Метод Роквелла — твердость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Твердость, определенная по этому методу, является безразмерной и обозначается HR, HRB, HRC и HRA; твердость вычисляется по формуле HR = 100 − kd, где d — глубина вдавливания наконечника после снятия основной нагрузки, а k — коэффициент. Таким образом, максимальная твердость по Роквеллу соответствует HR 100.

Метод Виккерса — твердость определяется по площади отпечатка, оставляемого четырехгранной алмазной пирамидкой, вдавливаемой в поверхность. Твердость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка (причем площадь отпечатка берется как площадь части поверхности пирамиды, а не как площадь ромба). Твердость, определенная по этому методу, обозначается HV;

Твердость по Шору (Метод вдавливания) — твердость определяется по глубине проникновения в материал специальной закаленной стальной иглы (индентора) под действием калиброванной пружины. В данном методе измерительный прибор именуется дюрометром. Обычно метод Шора используется для определения твердости низкомодульных материалов (полимеров). Метод Шора, описанный стандартом ASTM D2240, оговаривает 12 шкал измерения. Чаще всего используются варианты A (для мягких материалов) или D (для более твердых). Твердость, определенная по этому методу, обозначается буквой используемой шкалы, записываемой после числа с явным указанием метода.

Дюрометры и шкалы Аскер — по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и национальная японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами.

Отличие от традиционного твердомера — электронный экран динамометра

Твердость по Шору (Метод отскока) — метод определения твердости очень твердых (высокомодульных) материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боек (основная часть склероскопа — измерительного прибора для данного метода), падающий с определенной высоты. Твердость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка. Основные шкалы C и D. Обозначается HSx, где H — Hardness, S — Shore и x — латинская буква, обозначающая тип использованной при измерении шкалы.

Следует понимать, что хотя оба метода Шора являются методами измерения твердости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал, это, все-таки, не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

Метод Кузнецова — Герберта — Ребиндера — твердость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл;

Метод Польди (двойного отпечатка шарика) — твердость оценивается в сравнении с твердостью эталона, испытание производится путем ударного вдавливания стального шарика одновременно в образец и эталон;

Шкала Мооса — определяется по тому, какой из десяти стандартных минералов царапает тестируемый материал, и какой материал из десяти стандартных минералов царапается тестируемым материалом.

Метод Бухгольца — метод определения твердости при помощи прибора Бухгольца. Предназначен для испытания на твердость (твердость по Бухгольцу) полимерных лакокрасочных покрытий при вдавливании индентора Бухгольца. Метод регламентируют стандарты ISO 2815, DIN 53153, ГОСТ 22233.

Методы измерения твердости делятся на две основные категории: статические методы определения твердости и динамические методы определения твердости. Для инструментального определения твердости используются приборы, именуемые твердомерами. Методы определения твердости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам.

Существующие методы определения твердости не отражают целиком какого-нибудь одного определенного фундаментального свойства материалов, поэтому не существует прямой взаимосвязи между разными шкалами и методами, но существуют приближенные таблицы, связывающие шкалы отдельных методов для определенных групп и категорий материалов. Данные таблицы построены только по результатам экспериментальных тестов и не существует теорий, позволяющих расчетным методом перейти от одного способа определения твердости к другому. Конкретный способ определения твердости выбирается исходя из свойств материала, задач измерения, условий его проведения, имеющейся аппаратуры и др.

В России стандартизированы не все шкалы твердости. В изготовлении ножей, а также при их продаже, применении и, конечно, в различных обсуждениях используется и, соответственно, чаще всего имеется в виду шкала Роквелла. А именно — HRC.

Шкалы твёрдости по Роквеллу

Существует целых одиннадцать шкал определения твердости по методу Роквелла, основанных на комбинации «индентор (наконечник) — нагрузка». Наиболее широко используются два типа индентеров: шарик из карбида вольфрама диаметром 1/16 дюйма (1,5875 мм) или такой же шарик из закаленной стали и конический алмазный наконечник с углом при вершине 120°. Возможные нагрузки — 60, 100 и 150 кгс. Величина твёрдости определяется как относительная разница в глубине проникновения индентора при приложении основной и предварительной (10 кгс) нагрузки.Для обозначения твёрдости, определённой по методу Роквелла, используется символ HR, к которому добавляется буква, указывающая на шкалу по которой проводились испытания (HRA, HRB, HRC).

НАИБОЛЕЕ ШИРОКО ИСПОЛЬЗУЕМЫЕ ШКАЛЫ ТВЁРДОСТИ ПО РОКВЕЛЛУ

Шарик диам. 1/16 дюйма из карбида вольфрама (или закаленной стали)

Чем твёрже материал, тем меньше будет глубина проникновения наконечника в него. Чтобы при большей твёрдости материала получалось большее число твёрдости по Роквеллу, вводят условную шкалу глубин, принимая за одно её деление глубину, равную 0.002 мм. При испытании алмазным конусом предельная глубина внедрения составляет 0.2 мм, или 0.2 / 0.002 = 100 делений, при испытании шариком — 0.26 мм, или 0.26 / 0.002 = 130 делений. Таким образом формулы для вычисления значения твёрдости будут выглядеть следующим образом:

а) при измерении по шкале А (HRA) и С (HRC):

Разность H − h представляет разность глубин погружения индентора (в миллиметрах) после снятия основной нагрузки и до её приложения (при предварительном нагружении)

б) при измерени по шкале B (HRB):

Связь между результатами проверки на твёрдость и прочностными характеристиками материалов исследовались такими учёными-материаловедами, как Н. Н. Давиденков, М. П. Марковец и др. Используются методы определения предела текучести по результатам проверки на твёрдость вдавливанием. Такая связь была найдена, например, для высокохромистых нержавеющих сталей после различных режимов термообработки. Среднее отклонение для конического алмазного индентора составляло всего +0,9 %. Были проведены исследования по нахождению связи между значениями твёрдости и другими характеристиками, определяемыми при растяжении, как предел прочности (временное сопротивление, сужение в шейке и истинное сопротивление разрушению).

Применительно к твердости сталей, из которых изготавливаются ножи, установлены следующие величины, зависящие также от способа термической обработки:

голоса
Рейтинг статьи
Читайте так же:
Лебедка из червячного редуктора своими руками
Ссылка на основную публикацию
Adblock
detector