Hydratool.ru

Журнал "ГидраТул"
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кинетическая энергия

Кинетическая энергия

Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек [1] . Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии [2] . Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как

где индекс   i нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения [3] . Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением [4] . Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T , E k i n > , K и другие. В системе СИ она измеряется в джоулях (Дж).

Содержание

История и этимология понятия [ править | править код ]

Прилагательное «кинетический» происходит от греческого слова κίνησις (kinesis, «движение»). Дихотомия между кинетической энергией и потенциальной энергией восходит к аристотелевским концепциям потенциальности и актуальности [en] [5] .

Принцип классической механики, согласно которому E ∝ mv 2 , был впервые разработан Готфридом Лейбницем и Иоганном Бернулли, описавшими кинетическую энергию как живую силу (лат.  vis viva ) [6] . Вильгельм Гравезанд из Нидерландов предоставил экспериментальные доказательства этой связи. Сбрасывая грузы с разной высоты на глиняный блок, он определил, что глубина их проникновения пропорциональна квадрату скорости удара. Эмили дю Шатле осознала значение данного эксперимента и опубликовала объяснение [7] .

Понятия «кинетическая энергия» и «работа» в их нынешнем научном значении восходят к середине XIX века. В 1829 году Гаспар-Гюстав Кориолис опубликовал статью Du Calcul de l’Effet des Machines, в которой излагалась математика того, что по сути является кинетической энергией. Создание и введение в оборот самого термина «кинетическая энергия» приписывают Уильяму Томсону (лорду Кельвину) c 1849—1851 гг. [8] [9] . Ренкин, который ввел термин «потенциальная энергия» в 1853 году [10] , позже цитировал У. Томсона и П. Тэйта с заменой слова «кинетическая» на «фактическая» [11] .

Кинетическая энергия в классической механике [ править | править код ]

Случай одной материальной точки [ править | править код ]

По определению, кинетической энергией материальной точки массой m называется величина

Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина   T остаётся постоянной, то есть кинетическая энергия является интегралом движения.

Читайте так же:
Лобзик makita 4329 k

Случай абсолютно твёрдого тела [ править | править код ]

При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:

Кинетическая энергия в гидродинамике [ править | править код ]

Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса [13] . Если, в согласии с методом Рейнольдса, представить   ρ = ρ ¯ + ρ ′ >+rho ‘> , v α = v α ¯ + v α ′ =>>+v’_> , где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:

Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.

Кинетическая энергия в квантовой механике [ править | править код ]

В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором ( p ^ = − j ℏ ∇ >=-jhbar nabla > ,   j  — мнимая единица):

Кинетическая энергия в релятивистской механике [ править | править код ]

Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как:

Или выражение для кинетической энергии в виде ряда Маклорена:

Свойства кинетической энергии [ править | править код ]

  • Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему [1] .
  • Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости [1] .
  • Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
  • Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея [1] . Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии [15][16] .
Читайте так же:
Как открутить пластиковый болт

Физический смысл кинетической энергии [ править | править код ]

Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии [2] :

Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения   F → d s → = d T >>>=>T> между состояниями 1 и 2).

Соотношение кинетической и внутренней энергии [ править | править код ]

Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.

Максимальная кинетическая энергия груза на пружине

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

Запуск колебательного движения тела осуществляется с помощью кнопки Старт . Остановить процесс в любой момент времени позволяет кнопка Стоп .

Графически показано соотношение между потенциальной и кинетической энергиями при колебаниях в любой момент времени. Обратите внимание, что в отсутствие затухания полная энергия колебательной системы остается неизменной, потенциальная энергия достигает максимума при максимальном отклонении тела от положения равновесия, а кинетическая энергия принимает максимальное значение при прохождении тела через положение равновесия.

Читайте так же:
Как сделать сварочный полуавтомат из инвертора

Задание 7. Верхний конец пружины идеального пружинного маятника неподвижно закреплён, как показано на рисунке. Масса груза маятника равна m, жёсткость пружины равна k. Груз оттянули вниз на расстояние x от положения равновесия и отпустили с начальной скоростью, равной нулю. Формулы А и Б позволяют рассчитать значения физических величин, характеризующих колебания маятника.

Установите соответствие между формулами и физическими величинами, значение которых можно рассчитать по этим формулам.

Максимальная кинетическая энергия груза на пружине

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Максимальная кинетическая энергия груза на пружине

1) амплитуда колебаний скорости

2) циклическая частота колебаний

3) максимальная кинетическая энергия груза

4) период колебаний

А) Имеем пружинный маятник массой m и жесткостью пружины k, тогда период свободных колебаний этого маятника определяется по формуле , а частота как . Циклическая частота , следовательно, для буквы А имеем ответ под номером 2.

Б) Для пружинного маятника известны формулы кинетической энергии и потенциальной энергии . Учитывая, что начальная скорость тела равна 0, то вся потенциальная энергия переходит в кинетическую, то есть . Ответ под номером 3.

Пру­жин­ный ма­ят­ник, со­сто­я­щий из груза и лёгкой пру­жи­ны, со­вер­ша­ет ко­ле­ба­ния. В мо­мент, когда груз на­хо­дит­ся в край­нем по­ло­же­нии, его не­мно­го под­тал­ки­ва­ют вдоль оси пру­жи­ны в на­прав­ле­нии от по­ло­же­ния

рав­но­ве­сия. Как в ре­зуль­та­те этого из­ме­ня­ют­ся мак­си­маль­ная ки­не­ти­че­ская энер­гия груза ма­ят­ни­ка и ча­сто­та его ко­ле­ба­ний?

Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

3) не из­ме­ня­ет­ся

За­пи­ши­те в таб­ли­цу вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

Мак­си­маль­ная ки­не­ти­че­ская энер­гия груза ма­ят­ни­каЧа­сто­та ко­ле­ба­ний ма­ят­ни­ка

Груз под­толк­ну­ли от по­ло­же­ния рав­но­ве­сия, от­ку­да сле­ду­ет, что ам­пли­ту­да ко­ле­ба­ний груза уве­ли­чит­ся. При этом уве­ли­чит­ся также и мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны. По за­ко­ну со­хра­не­ния энер­гии, это при­ве­дет к уве­ли­че­нию мак­си­маль­ной ки­не­ти­че­ской энер­гии груза ма­ят­ни­ка.

Пе­ри­од и ча­сто­та пру­жин­но­го ма­ят­ни­ка за­ви­сят толь­ко от массы груза и жест­ко­сти пру­жи­ны. Таким об­ра­зом, при уве­ли­че­нии ам­пли­ту­ды ко­ле­ба­ний груза, ча­сто­та ко­ле­ба­ний ма­ят­ни­ка не из­ме­нит­ся.

Максимальная кинетическая энергия груза на пружине

Вычислим энергию тела массой m, совершающего гармонические колебания с амплитудой А и круговой частотой ω (рис. 1.1).

Потенциальная энергия U тела, смещенного на расстояние х от положения равновесия, измеряется той работой, которую произведет возвращающая сила , перемещая тело в положение равновесия.

Читайте так же:
Из чего состоит проволока

, отсюда , или

,

(1.5.1)

(1.5.2)

Кинетическая энергия

.

(1.5.3)

Заменив в (1.5.2) и сложив почленно уравнения (1.5.2) и (1.5.3), получим выражение для полной энергии:

, или

.

(1.5.4)

Полная механическая энергия гармонически колеблющегося тела пропорциональна квадрату амплитуды колебания.

В случае свободных незатухающих колебаний полная энергия не зависит от времени, поэтому и амплитуда А не зависит от времени.

Из (1.5.2) и (1.5.3) видно, что и потенциальная U, и кинетическая K энергия пропорциональны квадрату амплитуды А 2 .

Рассмотрим колебания груза под действием сил тяжести (рис. 1.4).

Из рис. 1.4 и из формул (1.5.2) и (1.5.3) видно, что U и K изменяются периодически (при свободных незатухающих колебаниях). Однако период изменения энергии в два раза меньше, чем период изменения смещения скорости и ускорения. Это значит, что и кинетическая, и потенциальная энергия изменяются с частотой, которая в два раза превышает частоту смещения гармонического колебания. За время одного полного колебания U и K дважды достигают своих максимальных значений и дважды обращаются в нуль. Связано это с тем, что и U, и K пропорциональны квадрату косинуса и синуса фазы колебаний.

Максимум потенциальной энергии (1.5.2) .

Максимум кинетической энергии , но когда и наоборот. На рис. 1.5 представлены графики зависимости х, U и K от времени t.

При колебаниях, совершающихся под действием потенциальных (консервативных) сил, происходит переход кинетической энергии в потенциальную и наоборот, но их сумма в любой момент времени постоянна.

На рис. 1.6 приведена кривая потенциальной энергии.

Горизонтальная линия соответствует определенному значению полной энергии: Расстояние от этой линии до кривой равно кинетической энергии, а движение ограничено значениями х, заключенными в пределах от + А до – А. Эти результаты полностью согласуются с полным решением уравнения движения.

Максимальная кинетическая энергия груза: формула

Кинетическая энергия — внутренняя энергия движущегося тела, обусловленная его инертностью (массой) и скоростью. Она равна энергии, которую нужно затратить, чтобы снизить скорость этого тела до нуля.

Например, движущийся автомобиль невозможно остановить мгновенно. Для остановки необходимо затратить энергию трения тормозных колодок о тормозные диски колес и шин об асфальт.

Кинетическая и потенциальная энергия измеряются в джоулях ($1 Дж = Н cdot м$).

В некоторых физических системах происходят циклические преобразования потенциальной (запасенной) энергии в кинетическую и обратно. Такие системы называются маятниками. Например, для груза, подвешенного на нити, потенциальная энергия максимальна, когда он отклонен на максимальный угол от вертикали. Мгновенная скорость груза в этот момент равна нулю и, следовательно, нулю равна и кинетическая энергия. По мере движения вниз под действием силы тяжести, скорость груза нарастает и достигает максимума в нижней точке, после чего снова начинает запасаться по мере движения вверх.

Проще всего изучать переход кинетической и потенциальной энергий друг в друга на примере пружинного маятника, где действует, если пренебречь силой трения, лишь сила упругости. Когда пружину сжимают, энергия запасается. Когда отпускают — потенциальная энергия, сохраненная в кристаллической решетке материала, высвобождается и превращается в кинетическую, разгоняя груз. Когда скорость груза достигает максимума, он продолжает движение по инерции, растягивая пружину в противоположном направлении, вновь запасая энергию и снижая скорость. Характеристики такого колебательного движения зависят только от материала пружины, толщины проволоки, из которой она намотана, диаметра и количества витков. Все эти факторы описываются единым параметром — коэффициентом упругости.

Максимальная кинетическая энергия груза

Для простого пружинного маятника полную энергию груза в любой момент времени можно выразить как

  • $E_p$ — потенциальная энергия,
  • $E_k$ — кинетическая энергия,
  • $m$ — масса,
  • $v$ — моментальная скорость,
  • $k$ — коэффициент упругости,
  • $x$ — приращение длины пружины в данный момент.

Готовые работы на аналогичную тему

Максимальную кинетическую энергию можно вычислить как

где $v_$ — максимальная скорость груза. Однако измерить ее на практике сложно. Проще, опираясь на постоянство суммы кинетической и потенциальной энергий, определить максимальную потенциальную (когда кинетическая равна нулю). Поскольку справедливо и обратное, можно записать:

где $x_$ — максимальное приращение растяжения пружины. Его легко измерить, а коэффициент упругости посмотреть в справочнике.

Компактный груз, массой 0,5 кг прикреплен к движущейся горизонтально пружине. Ее коэффициент упругости равен 2000 $frac<Н><м>$. Каково было начальное приращение длины пружины, если его максимальная скорость во время колебаний составляет 1 $frac<м><с>$?

Из условий задачи можно найти максимальную кинетическую энергию груза:

Выразив максимальную потенциальную энергию через приращение длины пружины, составим равенство:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector