Hydratool.ru

Журнал "ГидраТул"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электроемкость. Конденсаторы

Электроемкость. Конденсаторы

Если у нас есть два проводника, изолированных друг от друга, которым мы сообщаем некоторые заряды (обозначим их соответственно q 1 и q 2 ), то между ними возникнет определенная разность потенциалов. Ее величина будет зависеть от формы проводников, а также от исходных величин зарядов. Обозначим такую разность Δ φ . Если мы говорим о разности, возникающей в электрическом поле между двумя точками, то ее обычно обозначают U .

В рамках темы данной статьи нам больше всего интересна такая разность потенциалов между проводниками, когда их заряды противоположны по знаку, но равны друг другу по модулю. В таком случае мы можем ввести новое понятие – электрическая емкость (электроемкость).

Электрической емкостью системы, состоящей из двух проводников, называется отношение заряда одного проводника ( q ) к разности потенциалов между этими двумя проводниками.

В виде формулы это записывается так: C = q ∆ φ = q U .

Для измерения электрической емкости применяется единица, называемая фарад. Она обозначается буквой Ф .

Конфигурации и размеры проводников, а также свойства диэлектрика определяют величину электроемкости заданной системы. Наибольший интерес для нас представляют проводники особой формы, называемые конденсаторами.

Конденсатор – это проводник, конфигурация которого позволяет локализовать (сосредотачивать) электрическое поле в одной выделенной части пространства. Проводники, составляющие конденсатор, называются обкладками.

Если мы возьмем две плоские пластины из проводящего материала, расположим их на небольшом расстоянии друг от друга и проложим между ними слой диэлектрика, то мы получим простейший конденсатор, называемый плоским. При его работе электрическое поле будет располагаться преимущественно в промежутке между пластинами, но небольшая часть этого поля будет рассеиваться вокруг них.

Часть электрического поля вблизи конденсатора называется полем рассеяния.

Иногда в задачах мы можем не учитывать его и работать только с той частью электрического поля, которое расположено между обкладками. Однако пренебрегать полем рассеяния допустимо далеко не всегда, поскольку это может привести к ошибочным расчетам из-за нарушения потенциального характера электрического поля.

Рисунок 1 . 6 . 1 . Электрическое поле в плоском конденсаторе.

Рисунок 1 . 6 . 2 . Электрическое поле конденсатора без учета поля рассеяния, не обладающее потенциальностью.

Модуль напряженности электрического поля, которое создает каждая обкладка в плоском конденсаторе, выражается соотношением следующего вида:

Исходя из принципа суперпозиции, можно утверждать, что напряженность E → поля, которое создают обе пластины конденсатора, будет равна сумме напряженностей E + → и E — → полей каждой пластины, то есть E → = E + → + E — → .

Векторы напряженностей обеих пластин во внутренней части конденсатора будут параллельны друг другу. Значит, мы можем выразить модуль напряженности их суммарного поля в виде формулы E = 2 E 1 = σ ε 0 .

Читайте так же:
Зажимное приспособление для фрезерования

Как рассчитать электроемкость конденсатора

Вне пластин векторы напряженности будут направлены в противоположные друг от друга стороны, значит, E будет равно нулю. Если мы обозначим заряд каждой обкладки как q , а ее площадь как S , то соотношение q S даст нам представление о поверхностной плотности. Умножив E на расстояние между обкладками ( d ) , мы получим разность потенциалов между пластинами в однородном электрическом поле. Теперь возьмем оба этих соотношения и выведем из них формулу, по которой может быть рассчитана электрическая емкость конденсатора.

C = q ∆ φ = σ · S E · d = ε 0 S d .

Электрическая емкость плоского конденсатора – величина, обратно пропорциональная расстоянию между обкладками и прямо пропорциональная их площади.

Заполнение пространства между проводниками диэлектрическим материалом может увеличить электроемкость плоского конденсатора в число раз, кратное undefined.

Введем обозначение емкости в виде буквы С и запишем это в виде формулы:

Данная формула называется формулой электроемкости плоского конденсатора.

Конденсаторы бывают не только плоскими. Возможны и другие конфигурации, также обладающие специфическими свойствами.

Сферическим конденсатором называется система из 2 -х концентрических сфер, сделанных из проводящего материала, радиусы которых равны R 1 и R 2 соответственно.

Цилиндрическим конденсатором называется системы из двух проводников цилиндрической формы, длина которых равна L , а радиусы R 1 и R 2 .

Обозначим проницаемость диэлектрического материала как ε и запишем формулы, по которым можно найти электрическую емкость конденсаторов:

  • C = 4 πε 0 ε R 1 R 2 R 2 — R 1 (сферический конденсатор),
  • C = 2 π ε 0 ε L ln R 2 R 1 (цилиндрический конденсатор).

Как рассчитать электроемкость батареи конденсаторов

Если мы соединим несколько проводников между собой, то мы получим конструкцию, называемую батареей.

Способы соединения могут быть разными. Если соединение будет параллельным, то напряжение всех конденсаторов в системе будет одинаково: U 1 = U 2 = U , а заряды можно найти по формулам q 1 = С 1 U и q 2 = C 2 U . При таком соединении вся система может считаться одним конденсатором, электроемкость которого равна C , заряд – q = q 1 + q 2 , а напряжение – U . В виде формулы это выглядит так:

С = q 1 + q 2 U или C = C 1 + C 2

Если в батарее конденсаторов элементы соединены параллельно, то для нахождения общей электроемкости нам нужно сложить емкости ее отдельных элементов.

Рисунок 1 . 6 . 3 . Конденсаторы, соединенные параллельно. C = C 1 + C 2

Рисунок 1 . 6 . 4 . Конденсаторы, соединенные последовательно: 1 C = 1 C 1 + 1 C 2

Если же батарея состоит из двух последовательно соединенных конденсаторов, то заряды обоих будут одинаковы: q 1 = q 2 = q . Найти их напряжения можно так: U 1 = q C 1 и U 2 = q C 2 . Такую систему тоже можно считать одним конденсатором, заряд которого равен q , а напряжение U = U 1 + U 2 .

C = q U 1 + U 2 или 1 C = 1 C 1 + 1 C 2

Если конденсаторы в батарее соединены последовательно, то для нахождения общей электроемкости нам нужно сложить величины, обратные емкостям каждого из них.

Справедливость обеих формул, приведенных выше, не зависит от количества конденсаторов в батарее.

Читайте так же:
Какие бензопилы самые надежные и качественные

Как рассчитать электроемкость батареи конденсаторов

Рисунок 1 . 6 . 5 . Смоделированное электрическое поле плоского конденсатора.

Что такое электрическая емкость и в чем она измеряется

Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:

C=q/Ф

Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:

Электроемкость шара

Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.

Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:

1 фарад =1 Кл/1 В

Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:

1 мФ = 10^(-3) Ф

1 мкФ = 10^(-6) Ф

1 нФ = 10^(-9) Ф

1 пФ = 10^(-12) Ф

Конденсаторы

Конденсатор — это две пластины из проводящего материала, расположенные друг напротив друга, между которым находится слой диэлектрика. В заряженном состоянии обкладки имеют разные потенциалы: одна из них будет положительной, а вторая отрицательной. Электроемкость конденсатора зависит от величины заряда на его обкладках и разности потенциалов, напряжения между ними. Между пластинами возникает электростатическое поле, которое удерживает заряды на обкладках. Формула электрической емкости конденсатора в общем случае:

C=q/U

Если сказать простыми словами, то емкость конденсатора зависит от площади пластин и расстояния между ними, а также относительной диэлектрической проницаемости материала, расположенного между ними. Их различают по используемому диэлектрику:

  • керамические;
  • плёночные;
  • слюдяные;
  • металлобумажные;
  • электролитические;
  • танталовые и пр.

По форме обкладок:

  • плоские;
  • цилиндрические;
  • сферические и пр.

Так как формула площади фигуры зависит от её формы, то и формула ёмкости будет разной для каждого случая.

Для плоского конденсатора:

Емкость плоского конденсатора

Для двух концентрических сфер с общим центром:

Емкость двух концентрических сфер с общим центром

Для цилиндрического конденсатора:

Электроемкость цилиндрического конденсатора

Как и у других элементов электрической цепи и в этом случае есть два основных способа соединения конденсаторов: параллельное и последовательное.

От этого зависит итоговая электрическая емкость полученной цепи. Расчёты ёмкости нескольких конденсаторов напоминают расчёты сопротивления резисторов в разном включении, только формулы для способов соединения расположены наоборот, то есть:

  1. При параллельном соединении общая электроемкость цепи является суммой емкостей каждого из элементов. Каждый следующий подключенный увеличивает итоговую емкость
Читайте так же:
Как отличить свинец от олова

Cобщ=C1+C2+C3

  1. При последовательном подключении электроемкость цепи снижается, подобно снижение сопротивления в цепи параллельно включённых резисторов. То есть:

Cобщ=(1/С1)+ (1/С2)+ (1/С3)

Важно! В параллельной схеме соединения напряжения на обкладках каждого элемента одинаковы. Это используют для получения больших значений электроемкости. В последовательном включении двух элементов напряжения на обкладках каждого из конденсаторов составляют по половине общего напряжения. Для трёх – трети и так далее.

Аккумуляторы и электроемкость

Основными характеристиками аккумуляторных батарей является:

  • Номинальное напряжение.
  • Емкость.
  • Максимальный ток разряда.

В данном случае для определения количественной характеристики времени работы или, говоря простым языком, чтобы рассчитать, на какое время работы прибора хватит аккумулятора, используют величину ёмкости.

В аккумуляторных батареях для описания электрической ёмкости используют следующие размерности:

  • А*ч — ампер-часы для больших аккумуляторов, например автомобильных.
  • мА*ч — милиампер-часы, для аккумуляторов для носимых устройств, например смартфонов, квадрокопетров и электронных сигарет.
  • Вт*часы — ватт-часы.

Эти характеристики позволяют определить, сколько времени работы выдержит аккумулятор при конкретной нагрузке. Для определения электрическую емкость аккумулятора измеряют в кулонах (Кл). В свою очередь кулон равен количеству электричества, переданному аккумулятору при силе тока 1А за 1с. Тогда если перевести в часы, то при токе в 1А за 1 час передается 3600 Кл.

Одним из способов измерения емкости аккумулятора является его разряд заведомо известным током, при этом вы должны замерить время разряда. Допустим, если аккумулятор разрядился до минимального уровня напряжения за 10 часов током в 5А – значит его емкость 50 А*ч

Электроемкость – это важная величина в электронике и электротехнике. На практике конденсаторы применяются практически в каждой схеме электронного устройства. Например, в блоках питания – для сглаживания пульсаций, уменьшения влияния высоковольтных всплесков на силовые ключи. Во времязадающих цепях различных схем, а также в ШИМ-контроллерах для того, чтобы задать рабочую частоту. Аккумуляторы также применяются повсеместно. Вообще задачи накапливания энергии и сдвига фаз встречаются очень часто.

Более подробно изучить вопрос поможет предоставленное видео:

Кратко объяснение изложено в этом видео уроке:

Теперь вы знаете, что такое электрическая емкость, в каких единицах происходит ее измерение и от чего зависит данная величина. Надеемся, предоставленная информация была для вас полезной и понятной!

Формула заряда конденсатора, q

По назначению конденсатор можно сравнить с батарейкой. Но имеется принципиальное отличие в работе данных элементов. Существуют отличия в предельной емкости и скорости зарядки конденсатора и батарейки.

Читайте так же:
Какой электрочайник лучше пластиковый или металлический

Формула заряда конденсатора

Величина заряда конденсатора (q) связана с его емкостью (C) и разностью потенциалов (U) между его обкладками как:

\[q=CU\ \qquad(1)\]

где q – величина заряда одной из обкладок конденсатора, а U={\varphi }_1-{\varphi }_2– разность потенциалов между его обкладками.

Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Заряд на пластинах плоского конденсатора равен:

\[q=\frac{\varepsilon {\varepsilon }_0S}{d}U \qquad(3)\]

где {\varepsilon }_0– электрическая постоянная; {S}– площадь каждой (или наименьшей) пластины; {d}– расстояние между пластинами; \varepsilon– диэлектрическая проницаемость диэлектрика, который находится между пластинами конденсатора.

Заряд на обкладках цилиндрического конденсатора вычисляется при помощи формулы:

\[q=\frac{2\pi \varepsilon {\varepsilon }_0l}{ln\left(\frac{R_2}{R_1}\right)}U \qquad(4)\]

где l – высота цилиндров; R_2– радиус внешней обкладки; R_1– радиус внутренней обкладки.

Заряд на обкладках сферического конденсатора найдем как:

\[q=\frac{4\pi \varepsilon {\varepsilon }_0R_1R_2}{R_2-R_1}U \qquad(5)\]

где R_1{;\ R}_2– радиусы обкладок конденсатора.

Заряд конденсатора связан с энергией поля (W) внутри него:

\[W=\frac{qU}{2}=\frac{q^2}{2C} \qquad(6)\]

Из формулы (6) следует, что заряд можно выразить как:

\[q=\frac{2W}{U}=\sqrt{2CW} \qquad(7)\]

Рассмотрим последовательное соединение из N конденсаторов ( рис. 1).

\[q_1=q_2=\dots =q_N \qquad(8)\]

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении, обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды.

При параллельном соединении конденсаторов (рис.2), соединяют обкладки, имеющие заряды одного знака. Суммарный заряд соединения (q) равен сумме зарядов конденсаторов.

\[q=q_1+q_2+\dots +q_N \qquad(9)\]

Примеры решения задач по теме «Заряд конденсатора»

\[U_1=U_2=\varepsilon\  \qquad(1.1)\]

Заряд на первом конденсаторе при этом равен:

\[q_1=C_1\varepsilon\  \qquad(1.2)\]

Заряд на обкладках второго конденсатора:

\[q_2=C_2\varepsilon\  \qquad(1.3)\]

Суммарный заряд системы можно найти как:

\[q=q_1+q_2 \qquad(1.4)\]

\[q_1=3\cdot {10}^{-6}\cdot 120=3,6\cdot {10}^{-4}\ \left(Kl\right)\]

\[q_2=6\cdot {10}^{-6}\cdot 120=7,2\cdot {10}^{-4}\ \left(Kl\right)\]

Тогда суммарный заряд равен:

\[q=3,6\cdot {10}^{-4}+7,2\cdot {10}^{-4}=10,8\cdot {10}^{-4}\ \left(Kl\right)\]

ЗаданиеЕмкость пускового устройства электрического двигателя равна C. Энергии имеющейся в конденсаторе достаточно для того чтобы поднять груз массы m на высоту h. Чему равен заряд конденсатора?
РешениеПри поднятии груза на высоту h происходит переход энергии поля конденсатора (W_c) в потенциальную энергию тела (E_p), поднятого над Землей, поэтому запишем:

\[W_c=E_p\  \qquad(2.1)\]

Энергию E_pнайдем как:

Конденсатор

Конденсатор – это устройство, способное запасать электрический заряд.

Устроен конденсатор следующим образом: есть две пластины (обкладки), между ними изолятор. Если подать на пластины напряжение, то пластина, подсоединённая к плюсу, получит избыток электронов, а подсоединённая к минусу, получит их недостаток. И такое положение вещей будет стабильным, так как положительные заряды с положительной обкладки будут притягиваться к отрицательным зарядам с отрицательной обкладки сквозь свой диэлектрика, а пройти сквозь него не смогут.

kondensator

На электрических схемах конденсатор обозначается так:

Конденсатор на схеме

Главный параметр конденсатора – это его ёмкость. Ёмкость обозначается буквой Cи измеряется в Фарадах (Ф).

Ёмкость – это отношение между тем, какое напряжение мы приложили к конденсатору и тем, сколько в результате на нём получилось заряда.

C = q / U

Ёмкость конденсатора зависит от площади перекрытия пластин, от расстояния между ними и от типа диэлектрика.

Если соединять конденсаторы параллельно, то их ёмкость суммируется

А если последовательно, то суммируется величина, обратная ёмкости:

Рекомендую посмотреть видео о том, как человек своими руками делает конденсатор, и заряжает его при помощи кота:

Электрическое поле внутри плоского конденсатора однородно, так как пластины достаточно большие в сравнении с зазором.

При зарядке конденсатора внешняя сила совершает работу, значит, конденсатор запасает энергию.

Энергия, запасённая в конденсаторе, равна E = q 2 / 2C, где q – это заряд на конденсаторе, а C – ёмкость.

Редактировать этот урок и/или добавить задание Добавить свой урок и/или задание

Добавить интересную новость

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) < echo (Html::a('Войдите', ['/user/security/login'], ['class' =>»]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else < if(!empty(Yii::$app->user->identity->profile->first_name) || !empty(Yii::$app->user->identity->profile->surname))< $name = Yii::$app->user->identity->profile->first_name . ‘ ‘ . Yii::$app->user->identity->profile->surname; > else < $name = ''; >echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>

При правильном ответе Вы получите 2 балла

Экспериментатор Женя сделал пушку Гаусса. Пушка использует энергию быстро разряжающихся конденсаторов. Женя собрал батарею из 100 параллельно соединённых конденсаторов по 500 мкФ каждый и зарядил их до 250 В. При выстреле 10-граммовая пуля разогналась до 100 м/с.

Когда полиция затем рассчитывала КПД электромагнитной пушки, какое значение она получила?

  1. 1*10 -7
  2. 2*10 -7
  3. 4*10 -7
  4. 0.016
  5. 0.032
  6. 0.064
  7. 0.4

Выберите всего один правильный ответ.

Добавление комментариев доступно только зарегистрированным пользователям

Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.

28.01.17 / 22:14, Иван ИвановичОтветить -2

Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector