Hydratool.ru

Журнал "ГидраТул"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коллекторный двигатель постоянного тока

Коллекторный двигатель постоянного тока

В отечественной классификации двигатели, о которых пойдёт речь ниже, обычно называют двигателями постоянного тока с возбуждением от постоянных магнитов. Вообще говоря, двигатели постоянного тока могут иметь различную конструкцию (например, с возбуждением от обмотки возбуждения), но среди двигателей малой мощности, массово применяемых в сервоприводах в основном применяются именно двигатели с постоянными магнитами.

RE8_cutted_8cm300dpi.jpg

Как работает коллекторный двигатель?

Коллекторный двигатель постоянного тока имеет обмотку на роторе и постоянный магнит на статоре. Обмотка ротора состоит из нескольких сегментов, которые подключены к пластинам коллектора. Щётки, перемещающиеся по коллектору, обеспечивают передачу электрического тока между статором и ротором, а также переключение сегментов обмотки при вращении ротора. При подаче постоянного напряжения к выводам двигателя электрический ток протекает через щётки и коллектор в сегменты обмотки, подключённые к пластинам коллектора на которых в настоящий момент стоят щётки. Ток, протекающий по обмотке ротора, взаимодействует с магнитным полем постоянных магнитов, создавая крутящий момент, который поворачивает ротор. При вращении ротора сегменты коллектора переключаются, позволяя току протекать через другие участки обмотки. Ток, протекающий через постоянно поворачивающиеся секции обмотки ротора, постоянно создаёт крутящий момент. При приложении к обмотке постоянного напряжения коллекторный двигатель вращается с постоянной скоростью.

Возможные варианты и специальные случаи

Выпускаемые сейчас бесколлекторные двигатели могут иметь самую разную конструкцию.
Коллекторные двигатели постоянного тока могут выпускаться с различной технологией изготовления обмотки. Есть двигатели с классической обмоткой, намотанной на стальной сердечник, и двигатели с полой цилиндрической обмоткой без стального сердечника. С точки зрения параметров имеется определённая разница между обмотками различных типов. Во-первых, классическая обмотка имеет существенно большую индуктивность, чем полая цилиндрическая обмотка, и соответственно большую постоянную времени. По этой причине, полая цилиндрическая обмотка допускает более динамичное изменение тока (момента), однако при работе от контроллера двигателя с невысокой частотой ШИМ модуляции для сглаживания пульсаций тока требуются фильтрующие дроссели большей индуктивности (а соответственно и большего размера). Во-вторых, классическая обмотка имеет большой момент инерции. При расположении обмотки на роторе, момент инерции ротора увеличивается, что отрицательно сказывается на динамике двигателя, особенно в случае работы на малоинерционную нагрузку. Кроме того, классическая обмотка, как правило, имеет заметно больший момент магнитной фиксации, а также меньший КПД, чем полая цилиндрическая обмотка.

Коллекторные двигатели могут также отличаться материалом, использованным при изготовлении щёток. В настоящее время при изготовлении коллекторных двигателей малой мощности применяются главным образом две технологии – графитовые и металлические щётки. Графитовые щётки изготавливаются из медно-графитового сплава и представляют собой бруски сложной формы, прижимаемые к коллектору пружинами. Коллектор в этом случае изготавливается из меди. Такие щётки хорошо работают с большими токами и в тяжёлых режимах (старт-стоп, реверс). При этом они создают больше помех и приводят к большим значениям тока холостого хода двигателя и к несколько более высоким потерям. Металлические щётки изготавливаются с использованием благородных металлов. В качестве материала для щёток применяется бронза с напылением в области контакта с коллектором. Щётки имеет форму плоской пластины, которая пружинит при прижатии к коллектору. В качестве материала для коллектора используется сплавы благородных металлов. Эти щётки плохо выдерживают большие токи и резкие броски тока, но хорошо работают на постоянных нагрузках и имеют низкие шумы.

Читайте так же:
Как сделать картофелесажалку своими руками для минитрактора

Отличия от других типов двигателей

Одно из основных отличий коллекторного двигателя от бесколлекторных ДПТ и от синхронных двигателей с постоянными магнитами – это наличие щёточно-коллекторного узла. Эта часть двигателя отличается повышенным износом, поскольку представляет собой электрическое соединение подвижных частей. Щёточно-коллекторный узел – это один из факторов ограничивающих срок службы и скорость коллекторного двигателя. С другой стороны, коллекторные двигатели выгодно отличаются простотой управления.

Когда нужен коллекторный двигатель?

Несмотря на срок службы и удельную мощность меньшие, чем у бесколлекторных двигателей, коллекторные двигатели по-прежнему представлены в каталогах производителей и продолжают применяться в различных проектах.

В тех случаях, когда в системе предполагается использование управления двигателем без использования обратной связи, коллекторный двигатель имеет очевидные преимущества: для его работы в таком случае можно обойтись без специализированного контроллера – достаточно обычного источника питания. Если двигатель подключается к управляющей электронике более или менее длинным кабелем, то будет существенна разница по количеству проводов, требуемых для подключения двигателя: 2 у коллекторного против 8 у бесколлекторного (с учётом датчиков Холла). В проектах, где пользователь управляющую электронику разрабатывает самостоятельно, может быть существенно то, что для коллекторного двигателя структура её программной части и аппаратная часть могут быть несколько проще.

Коллекторные двигатели переменного тока

В электротехнике давно отгремели последние битвы затяжного конфликта, известного как «война токов». Еще в XIX веке было обнаружено, что у переменного и постоянного сетевого напряжения есть свои плюсы и минусы. Мало-помалу переменный ток и его сторонники смогли одержать победу: в 2007 году окончательно «пал» Нью-Йорк, чьи электрические сети были наконец переведены на переменный ток.

Но безоговорочной победы не было: за постоянным током остались некоторые позиции. В частности, по сию пору в промышленности широко используются достоинства электропривода постоянного тока. Эти достоинства заключаются в хорошем пусковом моменте двигателя и в широком диапазоне регулирования скорости.

Читайте так же:
Градусная мера правильного шестиугольника

Коллекторные двигатели переменного токаОднако есть электродвигатели, обладающие некоторыми достоинствами двигателей постоянного тока, но работающие на токе переменном. Речь идет о коллекторных однофазных двигателях переменного тока.

По своей сути это обычные коллекторные электродвигатели. Да это и не удивительно: ведь любой двигатель постоянного тока теоретически может работать в переменной сети. Направление тока в якорной обмотке и обмотке возбуждения меняется одновременно, а это значит, что крутящий момент двигателя по своему направлению будет неизменен.

Проблема только в том, что при независимом или параллельном соединении обмоток между током якоря и током возбуждения неизбежно возникнет разность фаз, и смену направлений токов можно будет считать одновременной лишь условно.

Поэтому коллекторные двигатели переменного тока бывают лишь последовательного возбуждения. При этом якорный ток и ток возбуждения являют собой одну физическую величину, что гарантирует постоянство электромагнитного и механического момента.

Обычно обмотку возбуждения коллекторных двигателей переменного тока делят на две части, первую из которых располагают до, а вторую – после якорной обмотки. Для компенсации электромагнитной реакции якоря применяются дополнительные, компенсационные обмотки.

Другая проблема, связанная с эксплуатацией этих двигателей в переменной сети, – это большие потери в стали, связанные с токами Фуко. Для двигателей постоянного тока этой проблемы не существует, поэтому их магнитопроводы выполняются цельными и сварными. А магнитопроводы коллекторных двигателей переменного тока шихтуются из отдельных стальных пластин для ограничения токов Фуко и соответствующих потерь.

И, наконец, еще одна проблема использования обсуждаемых здесь однофазных двигателей переменного тока связана с наличием коллекторно-щеточного аппарата. Коммутация на щетках осложнена, неизбежны потери. При износе щеток или коллекторных пластин может возникнуть круговой огонь, и привод надолго выйдет из строя.

Из-за перечисленных недостатков эти однофазные электродвигатели переменного тока имеют весьма посредственные энергетические показатели. Поэтому применяют эти двигатели преимущественно в маломощных бытовых приводах: в стиральных машинах, пылесосах, электродрелях, болгарках и перфораторах.

В этих устройствах сполна раскрываются достоинства этих необычных двигателей, традиционно свойственные двигателям постоянного тока. Механическая характеристика коллекторного двигателя переменного тока по понятным причинам схожа с характеристикой двигателя постоянного тока последовательного возбуждения.

Отсюда имеем высокий пусковой момент, способность выдерживать существенные перегрузки и готовность к регулированию в самых широких пределах. Из недостатков, характерных для этих двигателей в быту, следует дополнительно отметить возникновение помех, вызванных непрерывной коммутацией на коллекторно-щеточном аппарате.

Помехи способны «забить» практически любой радиосигнал, и телевизор или радиоприемник могут просто перестать работать на время включения коллекторного привода переменного тока.

Читайте так же:
Как пользоваться керхером в домашних условиях

Коллекторный и бесколлекторный двигатели

В ассортименте продукции Greenworks есть инструменты с коллекторным (щёточным) и бесколлекторным (бесщёточным) двигателями. Но везде делается акцент только на бесколлекторном электродвигателе. Почему только на нём, и для чего тогда устройства с щёточным? Расскажем в данной статье преимущества и недостатки каждого электродвигателя и ответим на эти два вопроса.

Коллекторный двигатель

Начнём с того, что двигатель — это устройство, которое преобразует какой-либо вид энергии в механический и наоборот. Эффективность данного процесса зависит от внутренней конструкции двигателя, которая в свою очередь зависит от источника тока (постоянного или переменного).

Устройство коллекторного двигателя

Якорь. Стержнем всей конструкции является якорь, он же металлический вал. Вал является движущимся элементом, от которого зависит крутящий момент. На нём также располагается ротор.

Ротор. Связан с ведущим валом. Его внешняя конструкция напоминает барабан, который вращается внутри статора. Задача ротора получать или отдавать напряжение рабочему телу.

Подшипники. Они расположены на противоположных концах якоря для его сбалансированного вращения.

Щётки. Выполнены обычно из графита. Их задача предавать напряжение через коллектор в обмотки.

Коллектор (коммутатор). Он выполнен в виде соединенных между собой медных контактов. Во время процесса вращения он принимает на себя энергию с щёток и направляет её в обмотки.

Обмотки. Расположены на роторе и статоре разных полярностей. Их функция в генерировании собственного магнитного поля под воздействием разных полярностей, за счёт чего якорь приходит в действие.

Сердечник статора. Выполнен из металлических пластин. Может иметь катушку возбуждения с полярным напряжением обмотки ротора. Или — постоянные магниты. Данная конструкция зависит от источника напряжения. Является статичным элементом всего механизма.

 Устройство=

  • Стоимость меньше, чем у бесколлекторных двигателей (БД).
  • Конструкция относительно проще конструкции БД.
  • В виду этого, техническое обслуживание проще.

На высоких оборотах увеличивается трение щёток. Отсюда вытекает:

  • Быстрый износ щёток.
  • Снижение мощности инструмента.
  • Появление искр.
  • Задымление инструмента.
  • Выход из строя инструмента раньше его «жизненного цикла».

Если рассматривать бытовую сферу применения, то коллекторный двигатель является традиционным и бюджетным вариантом эксплуатации (и самым часто используемым).
Инструменты на данном типе двигателя преданно и верно справятся с любой повседневной задачей в пределах своих возможностей. Так как такие инструменты по стоимости значительно дешевле инструментов на бесколлекторном двигателе, их рассматривает категория потребителей, которая придерживается мнения: «ничто не вечно». Зачем переплачивать, если любой агрегат может выйти из строя? Мы же считаем, что при надлежащих условиях эксплуатации любой инструмент может прослужить верой и правдой довольно долгий срок. Но выбор за Вами.

Читайте так же:
Как обозначается блок питания на схеме

Бесколлекторный двигатель

Если в коллекторном двигателе всё приходит в действие за счёт механики, то в бесщёточном — чистая электроника. Также позиции некоторых элементов в конструкции меняются местами. В коллекторном двигателе обмотки находились на роторе, а постоянные магниты — на статоре. У бесколлеторного — постоянные магниты переносятся на ротор, а катушки с обмоткой располагаются на статоре. Также ротор и статор могут менять свои позиции: есть модели двигателей с внешним ротором. Здесь отсутствуют щётки и коллектор, вместо них добавлен микропроцессор (контроллер) и кулер для охлаждения системы. Микропроцессор контролирует положение ротора, скорость вращения, равномерное распределение напряжения по катушкам обмотки.

Основные типы бесщёточного двигателя :

  • Асинхронный — это двигатель, который преобразовывает электроэнергию переменного тока в механическую. Название происходит от разной скорости вращения магнитного поля и ротора. Частота вращения ротора меньше, чем у магнитного поля, создаваемого обмотками статора (Например, двигатель DigiPro, который используется в продукции Greenworks).
  • Синхронный — это двигатель переменного тока, у которого частота вращений ротора равна частоте вращений магнитного поля.

Тип двигателя с внешним ротором

Устройство бесколлекторного двигателя. Внешний ротор

Расположение ротора и статора в бесщёточном двигателе DigiPro

 Двигатель=

  • Из-за отсутствия щёток меньше трения.
  • Меньше подвержены износу.
  • Отсутствие искр и возможного возгорания.
  • Упрощенная регулировка крутящего момента в больших пределах.
  • Экономия расходуемой энергии.
  • У инструментов с реверсом одинаковая мощность в обоих направлениях вращения.
  • Быстрый запуск с больших скоростей.
  • Могут разгоняться до предельных показателей.
  • Некоторые модели при сильной нагрузке оснащены системой защиты двигателя.
  • Значительно дороже в цене, чем коллекторные двигатели.
  • Техническое обслуживание более узкоспециализированное.

Несомненно бесколлекторные двигатели ориентированы на профессиональные работы с приличной нагрузкой. Несмотря на высокие показатели усовершенствованного типа двигателя, его единственный недостаток бьёт по кошельку. И перед тем, как приобретать инструмент на том или ином двигателе, прежде всего надо поставить перед собой вопрос: для каких целей он нужен. Уже исходя из ответа делать свой выбор.

Сколько людей — столько и мнений. Компания Greenworks старается делать качественную продукцию на разных типах двигателя, чтобы каждый мог подобрать себе инструмент по предпочтениям, функционалу и необходимой мощности под конкретные задачи, которые у каждого клиента свои. Именно поэтому, например, в разделе «Ручной инструмент» Вы можете наблюдать один тип агрегата на коллекторном и бесколлекторном двигателях. Какой лучше? Выбор за Вами!

КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ

Коллекторный двигатель — это электрическая машина, соединяющая обмотку ротора с коллектором для преобразования электрической энергии в механическую. Бывают коллекторные двигатели постоянного и переменного тока. Основным достоинством коллекторных двигателей постоянного тока является возможность регулирования частоты вращения в широком диапазоне, линейность механической и, в большинстве случаев, регулировочной характеристики, большой пусковой момент, высокое быстродействие, малая масса и объем на единицу полезной мощности и более высокий КПД по сравнению с двигателями переменного тока той же мощности.

Читайте так же:
Искрят щетки на шуруповерте

По функциональному назначению коллекторные двигатели постоянного тока подразделяются на силовые и управляемые. Силовые электродвигатели выполняются со стабилизацией и без стабилизации частоты вращения. КПД двигателей постоянного тока различной мощности лежит в пределах 10—85% и зависит от функционального назначения двигателя, режима работы, степени использования, способа возбуждения, конструктивного исполнения. Наибольший КПД имеют двигатели с полым якорем и возбуждением от постоянных магнитов, наименьший — двигатели с электромагнитным возбуждением. В коллекторном двигателе переменного тока ротор с коллектором используются в качестве механического преобразователя
частоты.

От синхронного и бесколлекторного асинхронного двигателя коллекторный двигатель переменного тока плавно и экономично регулирует скорость вращения при хороших пусковых и рабочих характеристиках, но данные двигатели малонадежны из-за необходимости тщательного ухода за коллекторными щетками. Коллекторные двигатели бывают однофазные и трехфазные. Однофазные двигатели, разработанные в конце XIX в., долгое время не применялись. Сегодня их вращающийся момент получается при взаимодействии магнитных полей, которые создаются обмотками возбуждения статора и обмоткой ротора. Этот вращающийся момент всегда направлен только в одну сторону. Изменить направление можно лишь при переключении концов обмотки возбуждения.

Данная обмотка мощностью более 10—15 кВт служит для компенсации реакции ротора, а дополнительные полюсы служат для улучшения коммутации. Улучшениями коммутации занимался в 1912 г. электротехник К. И. Шенфер.

Трехфазные коллекторные двигатели переменного тока являются асинхронными электрическими машинами, которые работают со скоростью, отличающейся от скорости вращения поля. На статоре коллекторного двигателя располагается трехфазная обмотка, а на роторе — обмотка, соединенная с коллектором, имеющим трехфазную систему щеток. Данные двигатели бывают параллельного и последовательного возбуждения. При параллельном возбуждении одна обмотка ротора питается через контактные кольца от сети, а другая — вспомогательная — соединяется с коллектором, который имеет двойную трехфазную систему щеток. При этом обмотка статора состоит из трех отдельных секций — фаз. Щетки каждой фазы могут как сдвигаться, так и раздвигаться. Такие трехфазные коллекторные двигатели переменного тока иногда применяются в прядильной, резиновой и полиграфической промышленности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector