Hydratool.ru

Журнал "ГидраТул"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Окм / книги / чернавский

окм / книги / чернавский

точными числами, близкими к максимальным, применяют редко, ограничиваясь и 6. Ново-Краматорский машиностроительный завод (НКМЗ) выпускает крупные (межосевые расстояния а w = 300 1000 мм) одноступенчатые горизонтальные редукторы с и = 2,53 8,0.

Выбор горизонтальной или вертикальной схемы для редукторов всех типов обусловлен удобством общей компоновки привода (относительным расположением двигателя и рабочего вала приводимой в движение машины и т. д.).

Одноступенчатые конические редукторы

Конические редукторы применяют для передачи движения между валами, оси которых пересекаются обычно под углом 90°. Передачи с углами, отличными от 90°, встречаются редко.

Рис. 2.4. Одноступенчатый редуктор с коническими зубчатыми колесами:

а — кинематическая схема; 6 — общий вид

Наиболее распространенный тип конического редуктора показан на рис. 2.4; редуктор с вертикально расположенным тихоходным валом изображен на рис. 2.5. Возможно исполнение редуктора с вертикально расположенным быстроходным валом; в этом случае привод осуществляется от фланцевого электродвигателя.

Рис. 2.5. Одноступенчатый конический редуктор с вертикальным ведомым валом:

а — кинематическая схема; б — общий вид

Передаточное число и одноступенчатых конических редукторов с прямозубыми колесами, как правило, не выше трех; в редких случаях u = 4. При косых или криволинейных зубьях u = 5 (в виде исключения и = 6,30).

У редукторов с коническими прямозубыми колесами допускаемая окружная скорость (по делительной окружности среднего диаметра) v 5 м/с. При более высоких скоростях рекомендуют применять конические колеса с круговыми зубьями, обеспечивающими более плавное зацепление и большую несущую способность.

Двухступенчатые цилиндрические редукторы

Наиболее распространены двухступенчатые горизонтальные редукторы, выполненные по развернутой схеме (рис. 2.6). Эти редукторы отличаются прос тотой, но из-за несимметричного расположения колес на валах повышается концентрация нагрузки по длине зуба. Поэтому в этих редукторах следует применять жесткие валы.

Соосная схема (рис. 2.7) позволяет получить меньшие габариты по длине; это ее основное преимущество.

В соосных редукторах быстроходная ступень зачастую недогружена*, так как силы, возникающие в зацеплении колес тихоходной ступени, значительно больше, чем в быстроходной, а межосевые расстояния ступеней одинаковы (а wБ = а wT ). Указанное обстоятельство является одним из основных недостатков соосных редукторов. Кроме того, к их недостаткам относят также:

а) большие габариты в направлении геометрических осей валов, по сравнению с редукторами, выполненными по развернутой схеме;

б) затруднительность смазывания подшипников, расположенных в cредней части корпуса;

в) большое расстояние между опорами промежуточного вала, поэтому требуется увеличить его диаметр для обеспечения достаточной прочности и жесткости.

Очевидно, применение соосных редукторов ограничивается случаями, когда нет необходимости иметь два выходных конца быстроходного или тихоходного вала, а совпадение геометрических осей входного и выходного валов удобно при намеченной общей компоновке привода.

В отношении типа зубьев и подшипников в двухступенчатых редукторах справедливо сказанное относительно одноступенчатых цилиндрических редукторов; часто быстроходную ступень выполняют косозубой, а тихоходную — прямозубой (это относится как к соосным, так и к несоосным редукторам).

Редуктор с раздвоенной быстроходной ступенью, имеющий косозубые колеса, показан на рис. 2.8. Тихоходная ступень при этом может иметь либо шевронные колеса, либо прямозубые (рис. 2.8, б). Кинематическая схема и общий вид редуктора с раздвоенной тихоходной ступенью показаны на рис. 2.9.

Читайте так же:
Как сделать керхер в домашних условиях

* При сравнительно небольшом общем передаточном числе (и 8 16) можно (при обеспечении удовлетворительной компоновки редуктора) так произвести разбивку общего передаточного числа по ступеням, что нагрузочная способность быстроходной ступени будет использована полностью.

Рис. 2.6. Двухступенчатый горизонтальный редуктор с цилиндрическими колесами:

а — кинематическая схема; б — редуктор со снятой крышкой (колеса косозубые);

в — общий вид редуктора, у которого подшипниковые узлы закрыты врезными крышками;

г — общий вид редуктора, у которого подшипниковые крышки привернуты винтами

Рис. 2.7. Двухступенчатый горизонтальный соосный редуктор:

а — кинематическая схема; б — общий вид

При раздвоенной быстроходной (или тихоходной) ступени колеса расположены симметрично относительно опор, что приводит к меньшей концентрации нагрузки по длине зубьев, чем при применении обычной развернутой или соосной схемы. Это позволяет иметь в рассматриваемом случае менее жесткие валы. Быстроходный вал редуктора, показанного на рис. 2.8, б, должен иметь свободу осевого перемещения («плавающий» вал), что обеспечивается соответствующей конструкцией подшипниковых узлов; в редукторе с шевронными тихоходными колесами свободу осевого перемещения должен иметь и тихоходный вал. При соблюдении указанного условия нагрузка распределяется поров-

Рис. 2.8. Двухступенчатый горизонтальный редуктор с раздвоенной первой быстроходной) ступенью:

а — кинематическая схема; б —общий вид (без крышки)

Рис. 2.9. Двухступенчатый горизонтальный редуктор с раздвоенной второй (тихоходной) ступенью:

а — кинематическая схема; б — общий вид (6eз крышки)

ну между параллельно работающими парами зубчатых колес.

Схемы вертикальных цилиндрических двухступенчатых редукторов приведены на рис. 2.10.

Двухступенчатые цилиндрические редукторы обычно применяют в широком диапазоне передаточных чисел: по ГОСТ 2185-66 u = 6,3 63. Крупные двухступенчатые цилиндрические редукторы, выпускаемые НКМЗ, имеют u = 7,33 44,02.

От целесообразной разбивки общего передаточного числа двухступенчатого редуктора по его отдельным ступеням в значительной степени зависят га-

Рис. 2.10. Кинематические схемы двухступенчатых цилиндрических вертикальных редукторов:

а – выполненного по развернутой схеме (трехосного); б —соосного

бариты редуктора, удобство смазывания каждой ступени, рациональность конструкции корпуса и удобство компоновки всех элементов передач. Дать рекомендации разбивки передаточного числа, удовлетворяющие всем указанным требованиям, невозможно, и поэтому все рекомендации следует рассматривать как ориентировочные.

Кинематические схемы редукторов

Оси валов таких редукторов могут быть расположены в плоскости, параллельной основанию корпуса редуктора (рис. 1); в наклонной плоскости (рис. 2); в плоскости, перпендикулярной к основанию корпуса редуктора: быстроходный вал находится или под тихоходным (рис. 3), или над тихоходным (рис. 4). Кроме того, оси валов могут быть перпендикулярны к основанию корпуса редуктора (рис. 5).

Цилиндрические одноступенчатые редукторы.

У редуктора могут быть два быстроходных вала и один тихоходный: рис. 6 оси всех валов расположены в одной плоскости, параллельной основанию корпуса; рис. 7 — оси быстроходных валов расположены выше оси тихоходного вала.

Если редуктор имеет один быстроходный вал, два тихоходных и промежуточное зубчатое колесо (рис. 8), то тихоходные валы вращаются в разные стороны.

Читайте так же:
Как правильно клеить эпоксидной смолой

Цилиндрические двухступенчатые редукторы.

Цилиндрические двухступенчатые редукторы могут иметь развернутую (рис. 9…16) и соосную схему (рис. 17…21). При развернутой схеме оси всех валов редуктора могут быть расположены в одной плоскости, параллельной основанию корпуса редуктора (рис. 9); в наклонной плоскости (рис. 10), в плоскости параллельной основанию корпуса редуктора (рис. 11), в плоскости, перпендикулярной основанию редуктора (рис. 13 быстроходный вал внизу, рис. 14 — быстроходный вал наверху). Кроме того, при развернутой схеме валы могут быть расположены перпендикулярно к основанию редуктора (рис. 16 — выходные концы валов направлены в одну сторону).

Цилиндрические двухступенчатые редукторы

При соосной схеме оси валов могут быть расположены в плоскости, параллельной основанию корпуса редуктора (рис. 17), и в плоскости, перпендикулярной основанию корпуса редуктора (рис. 18 промежуточный вал внизу, рис. 19 — промежуточный вал наверху). На рис. 20 показана соосная двухпоточная схема (оси валов расположены в плоскости, параллельной основанию корпуса редуктора), на рис. 21 — соосная трехпоточная схема (промежуточные валы расположены равномерно по окружности).

Цилиндрические трехступенчатые редукторы.

Цилиндрические трехступенчатые редукторы с развернутой схемой показаны на рис. 22…26. У таких редукторов оси валов могут быть расположены в плоскости, параллельной основанию корпуса редуктора (рис. 22 — колеса размещены в шахматном порядке, рис. 24 — колеса размешены последовательно вдоль осей, рис. 25 колеса промежуточной ступени раздвоены). Коме того, оси валов могут быть расположены в наклонной плоскости (рис. 23) и в плоскости, перпендикулярной к основанию корпуса редуктора (рис. 26 -быстроходный вал наверху).

Цилиндрические трехступенчатые редукторы

Конические одноступенчатые редукторы.

Оси валов этих редукторов могут быть расположены в плоскости, параллельной основанию корпуса редуктора (рис. 27); быстроходный вал может быть расположен параллельно, а тихоходный перпендикулярно к основанию корпуса редуктора (рис. 28); быстроходный вал — перпендикулярно. а тихоходный — параллельно к основанию корпуса редуктора (рис. 29). Угол между осями валов может быть меньше 90= (рис. 30).

Конические одноступенчатые редукторы

Коническо-цилиндрические двухступенчатые редукторы.

Коническо-цилиндрические двухступенчатые редукторы

Быстроходная ступень у этих редукторов — с коническими колесами, тихоходная ступень — с цилиндрическими колесами. В схеме на рис. 31 оси всех валов расположены в одной плоскости, параллельной основанию корпуса. редуктора. В схеме на рис. 32 ось быстроходного вала направлена перпендикулярно к основанию корпуса редуктора.

Коническо-цилиндрические трехступенчатые редукторы.

Коническо-цилиндрические трехступенчатые редукторы

Быстроходная ступень у этих редукторов — с коническими колесами, промежуточная и тихоходная ступени — с цилиндрическими колесами (рис. 37 — оси всех валов расположены в одной плоскости, параллельной основанию корпуса редуктора, рис. 38 — оси промежуточных и тихоходного валов расположены в плоскости, параллельной основанию корпуса редуктора; ось быстроходного вала направлена перпендикулярно к основанию корпуса редуктора.

Червячные одноступенчатые редукторы.

Червячные одноступенчатые редукторы

Вал червяка расположен под колесом (рис. 33), вал червяка расположен над колесом (рис. 34). Кроме того, ось вала колеса может быть расположена перпендикулярно, а ось вала червяка параллельно основанию корпуса редуктора (рис. 35) или ось вала червяка перпендикулярна, а ось вала колеса — параллельно основанию корпуса редуктора (рис. 36).

Червячные двухступенчатые редукторы.

Червячные двухступенчатые редукторы

В схеме на рис. 39 оси быстроходного и тихоходного валов параллельны между собой и параллельны основанию корпуса редуктора, вал червяка тихоходной ступени расположен под колесом. В схеме на рис. 40 ось тихоходного вала перпендикулярна, а ось быстроходного вала параллельна основанию корпуса редуктора.

Читайте так же:
Как набить смазку в закрытый подшипник

Цилиндрическо-червячные двухступенчатые редукторы.

Цилиндрическо-червячные двухступенчатые редукторы

В схеме на рис. 41 быстроходная ступень — с цилиндрическими колесами; тихоходная ступень — с червячной парой; быстроходный и тихоходный валы перекрещиваются под прямым углом и параллельны основанию корпуса редуктора. В схеме на рис. 42 быстроходная ступень с червячной парой, а тихоходная с цилиндрическими колесами; быстроходный и тихоходный валы перекрещиваются под прямым углом и параллельны основанию корпуса редуктора. В схеме на рис. 43 быстроходная ступень с цилиндрическими колесами; тихоходная ступень — с червячной парой; быстроходный и промежуточный валы перпендикулярны к основанию корпуса, тихоходный вал параллелен основанию корпуса.

Кинематическая схема редуктора

= 4,2 кВт, = 78 об/мин, тип — K , Т=20000 ч., режим-const.

Содержание

Кинематическая схема редуктора 1

1.Выбор электродвигателя; расчет основных кинематических и энергетических параметров 5

1.1 Расчет мощности электродвигателя 5

1.2 Расчет частоты вращения вала электродвигателя 5

1.3 Выбор марки электродвигателя, расчет номинальной частоты вращения вала электродвигателя, суммарного передаточного отношения ременной и зубчатой передачи. 5

Марка электродвидагеля 4A132S2Y3 [1, с 390, т. П1] 6

S- скольжение электродвигателя, S=3,3% 6

Номинальная частота вращения 6

1.4 Расчет частот вращения валов привода 6

1.5 Расчет мощностей и крутящих моментов, передаваемых валами редуктора 6

2. Расчет зубчатой передачи 6

2.1 Выбор материалов и способов термообработки шестерни и колеса. Расчет допускаемых напряжений. 7

Выбираем для шестерни и колеса сталь 45 с термообработкой улучшения для шестерни, с нормализацией – для колеса 7

НВ1=210 НВ2=190 [1, c.34, т. 3.3] 7

2.1.1 Расчет допускаемых контактных напряжения 7

2.2 Расчет параметров зубчатой передачи 9

2.3 Проверочный расчет зубчатой передачи 10

3. Первый этап эскизной компоновки редуктора 13

3.1 Компоновка зубчатой передачи в корпусе редуктора 13

3.2 Компоновка валов 14

1 – участок для установки полумуфты, соединительной муфты 15

2 – участок, контактирующий с уплотнением в сквозной крышке подшипника 15

3 – участки для установки внутренних колец подшипников качения 15

4 – участок для установки ступицы колеса 15

5 – буртосевой фиксации ступицы колеса и внутреннего кольца подшипника 15

6 – конус центрирования шпоночного паза на ступице относительно шпонки, установленной на валу 15

3.3 Предварительный выбор подшипников 16

3.4 Компоновка подшипников в корпусе редуктора 16

4. Расчет валов 16

4.1 Определение усилий зацепления 16

4.2 Построение расчетных схем валов, определение опорных реакций, построение эпюр изгибающих и крутящих моментов 17

4.3. Уточненный расчет валов 19

5. Расчет шпоночных соединений 23

5.1 Быстроходный вал 23

5.2 Тихоходный вал 23

6. Расчет теоретической долговечности подшипниковых опор 24

6.1 Быстроходный вал 24

n1=277,07 об/мин 26

7. Расчет элементов корпуса редуктора 26

7.1. Расчет глубины подшипниковых гнезд. 26

7.6 Расчет толщины фланцев под болты . 28

7.6.1 Нижний фланец. 28

В курсовом проекте выполнены расчеты:

Основных кинематических и энергетических параметров привода;

Читайте так же:
Клинышки для укладки плитки

Проектный и проверочный расчет зубчатых передач;

Расчет шпоночных соединений;

Расчет теоретической долговечности подшипниковых опор.

На основе теоретических расчетов выполнены сборочные чертежи редуктора со спецификацией и рабочие чертежи нескольких деталей.

1.Выбор электродвигателя; расчет основных кинематических и энергетических параметров

1.1 Расчет мощности электродвигателя

где P — мощность на валу исполнительного механизма, P =4,2 кВт;

η  – суммарный КПД привода,

где — КПД ременной передачи, = 0,97

— КПД зубчатой передачи, =0,98

— КПД одной пары подшипников качения, = 0,99

р – количество пар подшипников качения, р=3

Тогда P дв =4,2 ∕ 0,922=4,55 кВт

1.2 Расчет частоты вращения вала электродвигателя

где n IV – частота вращения ведомого вала привода, n IV =78 об/мин

u ∑ — суммарное передаточное отношение привода

где u 1 =2…5 – передаточное отношение ременной передачи

u 2 =2…5 – передаточное отношение зубчатой передачи

n дв = 78∙4…78∙25=312…1950 об/мин

Электродвигатель является стандартным изделием, n c выбираем из ряда: 750, 1000, 1500, 3000 об/мин

1.3 Выбор марки электродвигателя, расчет номинальной частоты вращения вала электродвигателя, суммарного передаточного отношения ременной и зубчатой передачи.

Марка электродвидагеля 4A132S2Y3 [1, с 390, т. П1]

S- скольжение электродвигателя, S=3,3%

Номинальная частота вращения

n H = n с (1 – ) = 1000 (1-0,033)=967 об/мин

u  = n H / n IV = 967/78= 12,39

Передаточное отношение зубчатой передачи и 2 регламентируется стандартом [1, с.36]

1.4 Расчет частот вращения валов привода

n I =n H =967 об/мин

n III =n II =n I =277,07 об/мин

n 2 =n IV = об/мин

1.5 Расчет мощностей и крутящих моментов, передаваемых валами редуктора

P 2 =Р 1 ∙ ∙ =4,32∙0,98∙0,99= 4,19 кВт

Крутящие моменты, передаваемые валами, определяется по формуле

2. Расчет зубчатой передачи

2.1 Выбор материалов и способов термообработки шестерни и колеса. Расчет допускаемых напряжений.

Выбираем для шестерни и колеса сталь 45 с термообработкой улучшения для шестерни, с нормализацией – для колеса

НВ 1 =210 НВ 2 =190 [1, c.34, т. 3.3]

2.1.1 Расчет допускаемых контактных напряжения

где i=1 для шестерни, i=2 для колеса;

 Hi limB  предел контактной выносливости при симметричном цикле нагружения; Мпа

[ S H j ]  коэффициент безопасности, определяется способом термообработки; [1, с.33]

[S H ] = 1.1..1.2 S H = 1.15

K HLj — коэффициент долговечности;

где N H 0 j – базовое число циклов, определяемое твердостью боков поверхности зубьев;

N HE j – эквивалентное число циклов, определяемое сроком службы передачи, числом оборотов вала шестерни и валов колеса, коэффициентом использования;

N HE j = T ∑ ∙k∙n i ∙60,

где T ∑ – срок службы зубчатой передачи; T ∑ =20000 часов

k — коэффициент использования передачи; k=0,8;

n i – частота вращения валов редуктора, n 1 = 277,07 об/мин, n 2 = 78,05 об/мин;

Конический редуктор

Существуют разные способы передать вращательное движение с одного вала на другой. В тех случаях, когда ведущий и ведомый вал по конструктивным особенностям должны находится перпендикулярно друг другу, используют конический редуктор. Данный механизм передает вращательное движение с вала на вал при помощи муфт или зубчатой передачи. При этом можно регулировать величину крутящего момента и угловую скорость посредством изменения величины муфт или зубчатых колес.

Конический редуктор

Конструктивные особенности

Существует два типа конических редукторов:

  • узкие;
  • широкие.

Под узким типом редуктора подразумевается то, что ширина зубчатого колеса будет равна четверти внешнего конусного расстояния. Передаточные числа в диапазоне 3-5, а число зубьев у шестерни 20-23. У редукторов широкого типа ширина колеса варьируется в пределах от 0,3 до 0,4 внешнего конусного расстояния. Значения передаточных чисел будут 1-2,5, а количество зубьев шестерни от 25 до 28.

Читайте так же:
Как сделать прозвон мультиметром

На рисунке ниже изображен чертеж конического редуктора, на котором видно, что зубчатые колеса соприкасаются под определенным углом. Валы установлены на однорядные роликовые подшипники и находятся в закрытом корпусе с крышкой. В большинстве случаев, материалом для корпуса служат сталь или чугун, но встречаются модели из легких сплавов. В конструкции используются шестерни конического типа, имеющие прямые или косые зубья. Использование радиальных подшипников позволяет выдерживать большие осевые нагрузки.

Чертеж конического редуктора

По типу исполнения, конические редукторы могут содержать одну или несколько ступеней, с увеличением которых будет задействовано большее количество валов и конических пар. Самыми распространенными на сегодняшний день являются редукторы конические одноступенчатые. Благодаря двухступенчатым и трехступенчатым агрегатам получается достичь требуемого вращающего момента и реверсивного движения.

В независимости от количества ступеней, вращение к редуктору от электродвигателя передается при помощи муфты, клиноременной или цепной передачи. На рисунке ниже изображена кинематическая схема одноступенчатого редуктора.

Кинематическая схема

Смазка конической пары осуществляется при помощи масляной ванны. Одна из шестеренок частично погружена в масло и при вращении перемещает часть масла на другую шестерню, с которого масла вновь капает в ванну. Во время работы агрегата часть масла попадает на внутренние стенки корпуса, в которых находятся технологические отверстия. Через них масло попадает к подшипникам и смазывает их.

Кинематические схемы редукторов, содержащих коническую передачу

Достоинства и недостатки

Конструкция конических редукторов схожа с цилиндрическими, поэтому достоинства и недостатки у них схожи. Основное достоинство конического редуктора заключается в расположении шестерней или муфт под углом. Это дает возможность передать вращение от ведущего вала к ведомому, находящемуся к первому под углом в 90 градусов.

Еще одним немаловажным достоинством такого устройства является невосприимчивость к переменным и кратковременным нагрузкам. За это они часто применяются в производственных процессах с частыми запусками.

Как было сказано выше, конические редукторы имеют схожее с цилиндрическими устройство, но есть свои недостатки. К ним относятся:

  • более низкий КПД;
  • заедание колес происходит чаще.

Несмотря на то, что КПД такого агрегата на 10% ниже и возможны случая заедания шестерней, конические редукторы пользуются большим спросом и нашли себе применение во многих сферах.

Расчет конического редуктора

При проектировании конического редуктора необходимо определить его тип, размеры и технические характеристики исходя из требований и возможностей его эксплуатации на предприятии, а также экономичность его изготовления.

Далее будет описана последовательность расчета конического редуктора, для которого необходимо предварительно определить:

  • крутящий момент;
  • частоту вращения валов;
  • планируемый срок работы.

Чтобы выполнить расчет потребуется специализированная литература, содержащая таблицы коэффициентов и значений, а также знание определенных формул.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector