Hydratool.ru

Журнал "ГидраТул"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что означает класс точности измерительного прибора

Что означает класс точности измерительного прибора

Класс точности измерительного прибора — это обобщенная характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых установлены в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.

Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности . Под ними понимают предельные для данного типа средства измерений погрешности.

Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.

Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.

Что означает класс точности измерительного прибораНа шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.

Если обозначаемое на шкале значение класса точности обведено кружком, например 1,5, это означает, что погрешность чувствительности δ s =1,5%. Так нормируют погрешности масштабных преобразователей (делителей напряжения, измерительных шунтов, измерительных трансформаторов тока и напряжения и т. п.).

Это означает, что для данного измерительного прибора погрешность чувствительности δ s= d x/x — постоянная величина при любом значении х. Граница относительной погрешности δ (х) постоянна и при любом значении х просто равна значению δ s, а абсолютная погрешность результата измерений определяется как d x= δ sx

Для таких измерительных приборов всегда указывают границы рабочего диапазона, в которых такая оценка справедлива.

Если на шкале измерительного прибора цифра класса точности не подчеркнута, например 0,5, это означает, что прибор нормируется приведенной погрешностью нуля δ о=0,5 %. У таких приборов для любых значений х граница абсолютной погрешности нуля d x= d о=const, а δ о= d о/хн.

При равномерной или степенной шкале измерительного прибора и нулевой отметке на краю шкалы или вне ее за хн принимают верхний предел диапазона измерений. Если нулевая отметка находится посредине шкалы, то хн равно протяженности диапазона измерений, например для миллиамперметра со шкалой от -3 до +3 мА, хн= 3 — (-3)=6 А.

переносной аналоговый амперметрОднако будет грубейшей ошибкой полагать, что амперметр класса точности 0,5 обеспечивает во всем диапазоне измерений погрешность результатов измерений ±0,5 %. Значение погрешности δ о увеличивается обратно пропорционально х, то есть относительная погрешность δ (х) равна классу точности измерительного прибора лишь на последней отметке шкалы (при х = хк). При х = 0,1хк она в 10 раз больше класса точности. При приближении х к нулю δ (х) стремится к бесконечности, то есть такими приборами делать измерения в начальной части шкалы недопустимо.

На измерительных приборах с резко неравномерной шкалой (например на омметрах) класс точности указывают в долях от длины шкалы и обозначают как 1,5 с обозначением ниже цифр знака «угол».

Если обозначение класса точности на шкале измерительного прибора дано в виде дроби (например 0,02/0,01), это указывает на то, что приведенная погрешность в конце диапазона измерений δ прк = ±0,02 %, а в нуле диапазона δ прк = -0,01 %. К таким измерительным приборам относятся высокоточные цифровые вольтметры, потенциометры постоянного тока и другие высокоточные приборы. В этом случае

Читайте так же:
Инвертор для сварочного аппарата

где хк — верхний предел измерений (конечное значение шкалы прибора), х — измеряемое значение.

Класс точности прибора, погрешности измерений

Любые измерения связаны с погрешностями. Различают абсолютную Δ, относительную γо и приведенную γп погрешности, которые определяются по формулам:

Δ=хи-х; γо= Класс точности прибора, погрешности измерений - №1 - открытая онлайн библиотекаγп Класс точности прибора, погрешности измерений - №2 - открытая онлайн библиотека

где: хи – измеренное значение искомой величины;

х – её истинное значение;

хн – нормативное значение искомой величины («вся шкала» прибора).

Указанный на приборе класс точности /0,05 ÷ 4,0/ означает приведенную погрешность прибора, т.е. абсолютную погрешность, выраженную в процентах от предела измерения прибора. Допустим, амперметр на ток 5А имеет класс точности 0,5. Это значит, что токи будут измеряться с абсолютной погрешностью

γ = 5∙0.5/100 = 0.025 А = 25 мА .

При выполнении работы прибор надо выбирать так, чтобы измеряемые величины тока или напряжения приходились на область от 25 % до 100 % шкалы прибора. Если же, например, амперметром на 5 А будет измеряться ток 0,4 А, то относительная погрешность измерения уже составит:

Класс точности прибора, погрешности измерений - №3 - открытая онлайн библиотека= 6,25 %.

Класс точности прибора, погрешности измерений - №4 - открытая онлайн библиотекаПри отсчёте показания по прибору со стрелочным указателем глаз наблюдателя должен располагаться в плоскости перпендикулярной к плоскости шкалы. Если прибор имеет зеркальную шкалу, конец стрелки прибора должен совпадать с её отражением в зеркале.

При измерениях полезно заранее оценить цену деления прибора, чтобы затем хорошо ориентироваться “на глаз”, чему будет равна половина, треть или четверть деления шкалы в амперах, миллиамперах или вольтах.

При измерениях электронными приборами Щ-4300, особенно на малых пределах, их показания зачастую колеблются. В таких случаях следует либо перейти на больший предел измерения, либо записать показание с имеющимся разбросом. Результаты измерений желательно записывать с одинаковым количеством десятичных знаков.

В случаях снятия каких-либо зависимостей или, например, при определении сопротивления элемента методом амперметра-вольтметра, считывать показания с приборов необходимо строго одновременно. Это поможет избежать ошибки от колебания подаваемого напряжения. При получении явно сомнительных результатов измерения следует повторить.

Чтобы получить ясную картину исследуемого явления и выбрать пределы измерения тока или напряжения, рекомендуется вначале выполнить опыт, не производя никаких записей.

Какая погрешность определяет класс точности прибора

2.2. Погрешности измерений

Ни одно измерение не выполняется идеально точно, всегда по различным причинам существует погрешность, т.е. отклонение ре­зультата измерения от истинного значения измеряемой величи­ны. Причиной погрешности может стать несовершенство методики измерения, используемых средств измерений, органов чувств человека-оператора, а также влияние внешних условий.

Все погрешности, не связанные с грубыми ошибками (промахами, возникающими вследствие недосмотра экспериментатора или неисправности аппаратуры), имеют случайную и систематическую составляющие. Случайные погрешности изменяют величину и знак при повторных измерениях одной и той же величины. Значение случайной погрешности измерения невозможно предвидеть и, следовательно, исключить. Для уменьшения их влияния проводят несколько измерений величины и берут среднее арифметическое из полученных значений.

Систематические погрешности остаются постоянными по величине и знаку или закономерно изменяю­тся при повторных измерениях одной и той же вели­чины. Систематические погрешности разделяются на методические (несовершенство метода измерений; в том числе влия­ние средств измерения на объект, свойство которого изме­ряется), инструментальные (зависящие от погрешности применяемых средств измерений), внешние (обусловленные влиянием условий проведения измерений) и субъективные (обусловленные индивидуальными особенностями оператора).

Различают абсолютную и относительную погрешность измерения.

Под абсолютной погрешностью измерения понимают разность между полученным в ходе измерения и истинным значением физической величины:

Читайте так же:
Как рассчитать общее сопротивление при параллельном соединении

Без сравнения с измеряемой величиной абсолютная погрешность ничего не говорит о качестве измерения. Одна и та же погрешность в 1 мм при измерении длины комнаты не играет роли, при измерении длины тетради уже может быть существенна, а при измерении диаметра проволоки совершенно недопустима.

Поэтому вводят относительную погрешность, показывающую, какую часть абсолютная погрешность составляет от истинного значения измеряемой величины. Относительная погрешность представляет собой отно­шение абсолютной погрешности к истинному значению измеряемой величины:

Относительная погрешность обычно выражается в процентах.

Результат измерения величины принято записывать в виде:

При записи абсолютной погрешности ее величину округляют до двух значащих цифр, если первая их них является единицей, и до одной значащей цифры во всех остальных случаях. При записи измеренного значения величины последней должна указываться цифра того десятичного разряда, который использован при указании погрешности.

Из формул (2.1) и (2.2) следует, что для нахождения погрешностей измерений необходимо знать истинное значение измеряемой величины. Поэтому этими формулами можно пользоваться только в тех редких случаях, когда проводятся измерения констант, значения которых заранее известны. Цель же измерений, как правило, состоит в том, чтобы найти не известное значение физической величины. Поэтому на практике погрешности измерений не вычисляются, а оцениваются.

В частности, относительную погрешность находят как отно­шение абсолютной погрешности не к истинному, а к измеренному значению величины:

Способы оценки абсолютной погрешности разные для прямых и косвенных измерений.

Максимальную абсолютную погрешность при прямых измерениях находят как сумму абсолютной инструментальной погрешности и абсолютной погрешности отсчета: D х= D хприб + D хотсч (2.4)

Погрешность отсчета является случайной и устраняется при многократных измерениях. Если же проводится одно измерение, она обычно принимается равной половине цены деления шкалы измерительного прибора.

Обратимся теперь к анализу погрешностей средств измерения. В зависимости от условий применения средств измерения различают основную и дополнительную погрешности. Основная погрешность – это погрешность средств измере­ний, используемых при нормальных условиях; дополнительная погрешность – это погрешность средств измерений, возникающая в результате отклонени­я значения одной или более влияющих величин от нормального значения.

Способ задания пределов допускаемой основной абсолютной погрешности измерительных средств определяется зависимостью погрешности от значения измеряемой величины. Если абсолютная погрешность измерительного прибора не зависит от измеряемой величины, то погрешность называется аддитивной и ее предел может быть выражен одним числом:

Зона погрешности в этом случае ограничена двумя прямыми линиями, параллельными оси абсцисс (рис.2.1а). Источники аддитивной погрешности – трение в опорах, неточность отсчета, дрейф, наводки, вибрации и другие факторы. От этой погрешности зависит наименьшее значе­ние величины, которое может быть измерено прибором.

Если погрешность прибора зависит от измеряемой величины, то она называется мультипликативной и предел допускаемой абсолютной погрешности выражается формулой D хмакс приб = ± (а + вх ), (2.6)

где в – постоянная величина, вх – предельное значение мультипликативной погрешности, а – предельное значение аддитивной погрешности.

Таким образом, мультипликативная погрешность прямо пропорциональна значению измеряемой величины х. Ис­точники мультипликативной погрешности – действие влия­ющих величин на параметры элементов и узлов средств измерений. Зона погрешности при наличии аддитивной и мультипликативной составляющей показана на рисунке 2.1 б.

Инструментальная погрешность электроизмерительных приборов определяется их классом точности. Класс точности (максимальная приведенная погрешность) – это отношение максимальной абсолютной погрешности прибора к пределу измерения величины (полному значению шкалы). Его, как и относительную погрешность, выражают в процентах. Класс точности показывает, сколько процентов максимальная инструментальная погрешность составляет от всей шкалы прибора:

Читайте так же:
Вещества твердые прочные с высокой температурой плавления

ГОСТом установлено 8 классов точности измерительных приборов: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Зная класс точности прибора и предельное значение измеряемой величины, можно определить абсолютную и относительную инструментальную погрешность измерения:

Из формулы (2.9) видно, что чем ближе значение измеряемой величины к пределу измерения, тем меньше относительная инструментальная погрешность.

У приборов, аддитивная составляющая погрешности ко­торых преобладает над мультипликативной , класс точности выражается одним числом. К таким приборам относится большинство аналоговых стрелочных приборов. Относительная инструментальная погрешность в этом случае находится просто по формуле (2.9).

Класс точности средств измерения, у которых аддитив­ная и мультипликативная составляющие основной погреш­ности соизмеримы, обозначается двумя числами, разделен­ными косой чертой: c / d . Причем класс точности должен удовлет­ворять условию c / d > l . К приборам, класс точности которых выражается дробью, относятся цифровые показывающие приборы. Их максимальная относительная погрешность определяется по формуле:

Для сравнения погрешностей измерения цифровых и стрелочных измерительных приборов постройте самостоятельно график зависимости относительной погрешности измерения постоянного напряжения от его величины приборами АВО-63 и Щ4313 на пределе 2В.

Класс точности или максимальная инструментальная погрешность приборов обычно приводится в его паспорте. Для менее точных приборов, если в паспорте ничего не указано, максимальная инструментальная погрешность принимается равной половине цены или цене деления шкалы.

Для прямых измерений сначала оценивается абсолютная погрешность, а затем относительная. При оценке погрешности косвенных измерений величины поступают следующим образом. Сначала находят абсолютные погрешности величин, полученных в ходе прямых измерений. Затем вычисляют относительную погрешность исследуемой величины, пользуясь для этого одной из формул, приведенных в таблице "расчет погрешностей". Формула относительной погрешности зависит от того, по какой формуле находят значение измеряемой величины. И только после этого находят абсолютную погрешность измеряемой величины, выраж ая ее и з формулы (2.3).

Класс точности

Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.

Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.

Класс точности

Класс точности измерительного прибора

Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.

Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:

  • приборы;
  • преобразователи;
  • установки;
  • системы;
  • принадлежности;
  • меры.
Читайте так же:
Графитовые электроды что это

На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности. Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001. Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:

  • делители напряжения;
  • трансформаторы тока и напряжения;
  • шунты.

Обозначение класса точности

Обозначение класса точности

Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.

Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.

Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.

Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.

Грузопоршневой манометр, класс точности 0,05

Грузопоршневой манометр, класс точности 0,05

Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.

Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.

Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

  • абсолютной;
  • относительной;
  • приведенной.

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Читайте так же:
Как паять паяльником провода между собой

Базовый способ определения погрешности

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

  • грубой (С);
  • нормальной (В);
  • повышенной (А).

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство. Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector