Hydratool.ru

Журнал "ГидраТул"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Широтно-импульсная модуляция

Широтно-импульсная модуляция

Широ́тно-и́мпульсная модуля́ция (ШИМ, англ.  pulse-width modulation (PWM) ) — процесс управления мощностью методом пульсирующего включения и выключения потребителя энергии. Различают ана́логовую ШИМ и цифрову́ю ШИМ, дво́ичную (двуху́ровневую) ШИМ и трои́чную (трёхуровневую) ШИМ [1] .

Содержание

Причины применения ШИМ [ править | править код ]

Основной причиной применения ШИМ является стремление к повышению КПД при построении вторичных источников питания электронной аппаратуры и в других узлах, например, ШИМ используется для регулировки яркости подсветки LCD-мониторов и дисплеев в телефонах, КПК и т. п.

Тепловая мощность, выделяемая на ключе при ШИМ [ править | править код ]

В ШИМ в качестве ключевых элементов используют транзисторы (могут быть применены и другие полупроводниковые приборы) работающие не в линейном, а в ключевом режиме, то есть транзистор всё время либо разомкнут (выключен), либо замкнут (находится в состоянии насыщения). В первом случае транзистор имеет очень высокое сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность очень мала. Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю, при этом выделяемая мощность так же мала. В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность, выделяемая в ключе, значительна, но так как длительность переходных состояний крайне мала по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной:

Принцип работы ШИМ [ править | править код ]

Реализуемый в контроллерах широтно-импульсный модулятор состоит из двух блоков: линейного интегратора (И-звена) и трехпозиционного релейного элемента. Установленными при изготовлении изделия параметрами схемы являются: постоянная времени И-звена Ти и уровень сигнала на выходе релейного элемента ±А.

Широтно-импульсный модулятор генерирует последовательность импульсов со скважностью, пропорциональной уровню сигнала на его входе. Параметр его настройки, то есть минимальная длительность импульса, устанавливается с помощью зоны нечувствительности релейного элемента широтно-импульсного модулятора [2] .

Аналоговая ШИМ [ править | править код ]

ШИМ-сигнал генерируется аналоговым компаратором, на один вход (по рисунку — на инвертирующий вход компаратора) которого подаётся вспомогательный опорный пилообразный или треугольный сигнал значительно большей частоты, чем частота модулирующего сигнала, а на другой — модулирующий непрерывный аналоговый сигнал. Частота повторения выходных импульсов ШИМ равна частоте пилообразного или треугольного напряжения. В ту часть периода пилообразного напряжения, когда сигнал на инвертирующем входе компаратора выше сигнала на неинвертирующем входе, куда подается модулирующий сигнал, на выходе получается отрицательное напряжение, в другой части периода, когда сигнал на инвертирующем входе компаратора ниже сигнала на неинвертирующем входе — будет положительное напряжение [3] .

Аналоговая ШИМ применяется в усилителях низкой частоты класса «D».

Цифровая ШИМ [ править | править код ]

В двоичной цифровой технике, выходы в которой могут принимать только одно из двух значений, приближение желаемого среднего уровня выхода при помощи ШИМ является совершенно естественным. Схема настолько же проста: пилообразный сигнал генерируется N-битным счётчиком. Цифровые устройства (ЦШИП) работают на фиксированной частоте, обычно намного превышающей реакцию управляемых установок (передискретизация). В периоды между фронтами тактовых импульсов выход ЦШИП остаётся стабильным, на нём действует либо низкий уровень, либо высокий, в зависимости от выхода цифрового компаратора, сравнивающего значение счётчика с уровнем приближаемого цифрового сигнала V(n). Выход за много тактов можно трактовать как череду импульсов с двумя возможными значениями 0 и 1, сменяющими друг друга каждый такт T. Частота появления единичных импульсов получается пропорциональной уровню приближаемого сигнала

V(n). Единицы, следующие одна за другой, формируют контур одного, более широкого импульса. Длительности полученных импульсов переменной ширины

V(n) кратны периоду тактирования T, а частота равна 1/(T*2 N ). Низкая частота означает длительные, относительно T, периоды постоянства сигнала одного уровня, что даёт невысокую равномерность распределения импульсов.

Описанная цифровая схема генерации подпадает под определение однобитной (двухуровневой) импульсно-кодовой модуляции (ИКМ). 1-битную ИКМ можно рассматривать в терминах ШИМ как серию импульсов частотой 1/T и шириной 0 либо T. Добиться усреднения за менее короткий промежуток времени позволяет имеющаяся передискретизация. Высоким качеством обладает такая разновидность однобитной ИКМ, как импульсно-плотностная модуляция     (англ.)  ( рус. , которая ещё именуется импульсно-частотной модуляцией.

Читайте так же:
Какая сабельная пила лучше

Восстанавливается непрерывный аналоговый сигнал арифметическим усреднением импульсов за много периодов при помощи простейшего фильтра низких частот. Хотя обычно даже этого не требуется, так как электромеханические составляющие привода обладают индуктивностью, а объект управления (ОУ) — инерцией, импульсы с выхода ШИМ сглаживаются и ОУ, при достаточной частоте ШИМ-сигнала, ведёт себя как при управлении обычным аналоговым сигналом.

В цифровой ШИМ период делится на части, которые заполняются прямоугольными подымпульсами. Средняя величина за период зависит от количества прямоугольных подымпульсов. Цифровая ШИМ — приближение бинарного сигнала (с двумя уровнями — вкл/выкл) к многоуровневому или непрерывному сигналу так, чтобы их средние значения за период времени t 2 − t 1 -t_<1>> были бы приблизительно равны.

Формально это можно записать так:

n выбирается таким образом, чтобы за период разность суммарных площадей (энергий) обеих величин была меньше допустимой:

Управляемыми «уровнями», как правило, являются параметры питания силовой установки, например, напряжение импульсных преобразователей /регуляторов постоянного напряжения/ или скорость электродвигателя. Для импульсных источников x(t) = Uconst стабилизации.

В цифровой ШИМ прямоугольные подымпульсы, заполняющие период, могут стоять в любом месте периода, на среднюю величину за период влияет только их количество. Например, при разбиении периода на 8 частей последовательности 11110000 , 11101000 , 11100100 , 11100010 , 11100001 и др. дают одинаковую среднюю за период величину, но отдельно стоящие «1» ухудшают режим работы ключа (транзистора).

В качестве ШИМ можно использовать даже COM-порт. Так как 0 передаётся как 0 0000 0000 1 (8 бит данных + старт/стоп), а 255 — как 0 1111 1111 1 , то диапазон выходных напряжений — 10—90 % с шагом в 10 %.

Управление многоуровневыми синусоидальными ШИМ (СШИМ) [ править | править код ]

Несколько методов были разработаны для сокращения искажения в многоуровневых инверторах, на основе классического СШИМ с треугольным носителем. Некоторые методы используют расположение источника, другие используют сдвиг фазы из нескольких несущих сигналов. Рисунок справа показывает типичное напряжение, сгенерированное одной секцией инвертора путем сравнения синусоидального сигнала с треугольным несущим сигналом.

Множество Nc-каскадов в одной фазе с их источниками, смещенными на угол θс = 360°/Nc и использующими то же управляющее напряжение, производят напряжение нагрузки с самым маленьким искажением. Этот результат был получен для многоэлементного инвертора в 7-уровневой конфигурацией, которая использует три подключенных последовательно сегмента в каждой фазе. Самое маленькое искажение получено, когда источник смещен на угол в θс = 360°/3 = 120°.

Довольно обыденной практикой в промышленном применении для многоуровневого инвертора является вставка третьей гармоники в каждый сегмент, как показано на Рисунок справа (b), для увеличения выходного напряжения. Ещё одна положительная сторона многоуровневого СШИМ-эффективная частота переключения напряжения нагрузки в Nc-количество раз, и частота переключения каждого сегмента, в зависимости от её несущего сигнала. Это свойство позволяет сокращать частоты переключения каждого сегмента, таким образом уменьшая потери на переключении.

Метод опорных векторов (MOB) [ править | править код ]

Техника МОВ может быть легко применима для всех многоуровневых инверторов. Рисунок справа показывает векторы пространства для традиционных двух-, трёх- и пятиуровневых инверторов. Эти векторные диаграммы универсальны независимо от типа многоуровневого инвертора. Другими словами, рисунок справа действителен для пятиуровневого зафиксированного на диод, зафиксированного на конденсатор, или расположенного каскадом инвертора. Смежные три вектора могут синтезировать желаемый вектор напряжения путем вычисления рабочего цикла (Tj, Tj+1, и Tj+2) для каждого вектора.

Пространственно-векторные методы ШИМ обычно имеют следующие преимущества: хорошее использование напряжения источника постоянного тока, низкая пульсация и относительно легкая аппаратная реализация цифровым сигнальным процессором (DSP). Эти функции делают его подходящим для высоковольтных и мощных потребителей.

С увеличением количества уровней существенно увеличиваются перегрузки и сложность переключения. Некоторые авторы использовали разложение пятиуровневой пространственно-векторной диаграммы в две трехуровневые пространственно-векторные диаграммы с фазовым сдвигом, чтобы минимизировать пульсации и упростить управление. Кроме того, простой пространственно-векторный метод был представлен без вычисления рабочего цикла смежных трех векторов.

ШИМ сигнал

Очень часто в робототехнике возникает необходимость плавно управлять каким-то процессом, будь то яркость светодиода, мощность обогревателя или скорость вращения моторчика. Вполне очевидно, что управление напрямую связано с изменением напряжения на потребителе: и светодиод будет по-другому светить, и моторчик крутиться с другой скоростью. Но проблема в том, что управлять напряжением может только такая штука, как ЦАП – цифро-аналоговый преобразователь, а в нашем микроконтроллере встроенного ЦАПа нет, у нас есть только цифровой сигнал, т.е. либо вкл, либо выкл: Можно ли добиться плавного управления цифровым сигналом? Оказывается можно! Представьте себе вентилятор, вращающийся на полной мощности, напряжение постоянно. Представим теперь, что секунду напряжение подаётся, и секунду – нет, и так продолжается “по кругу”. Вентилятор начнёт крутиться в два раза медленнее, но мы скорее всего будем замечать моменты включения и выключения, особенно если вентилятор маленький. Большой вентилятор более инертен и там можно даже не заметить изменений скорости в пределах двух секунд. Можно теперь включать напряжение на 0.5 секунды, а на остальные 1.5 секунды – выключать. Вентилятор будет крутиться со скоростью 25% от максимальной. Мы с вами смогли представить так называемый ШИМ сигнал, широтно-импульсную модуляцию С лампочкой накаливания оно тоже будет работать, она ведь весьма инертна, но вот со светодиодом мы будем видеть, как он включается и выключается, потому что он практически не имеет задержки включения/выключения. Что же делать? Всё очень просто, поднять частоту. В мысленном эксперименте у нас был период 2 секунды, что есть 0.5 Гц. А теперь представьте себе такой сигнал с частотой скажем 1000 Гц. Или 25’000 Гц (25 кГц). Теперь роль играет инертность глаза, он не заметит вспышек на такой частоте, для него это будет просто уменьшение яркости. Задача решена! Изменяя так называемое “заполнение” ШИМ сигнала можно менять “суммарное” напряжение (интегрированное) за некоторый период. Чем больше заполнение ШИМ, тем выше напряжение, но не выше напряжения, которое мы “ШИМим”: При помощи ШИМ сигнала можно даже модулировать сложные аналоговые сигналы, например – синусоиду. На картинке ниже показан ШИМ (снизу) и этот же ШИМ после фильтров: Вот таким образом кстати и работают инвертеры DC-AC. Возвращаясь к свойствам ШИМ сигнала, их всего два: частота (frequency) и заполнение (duty), с ними мы разобрались. Давайте перейдём к генерации ШИМ при помощи Arduino.

Читайте так же:
Как выкрутить сломанную шпильку из блока двигателя

Arduino и ШИМ

В уроке про функции времени я рассказывал, что у микроконтроллера есть так называемые счётчики, которые считают “пинки” от тактового генератора (кварца). Данные счётчики как раз и генерируют ШИМ сигнал, т.е. само вычислительное ядро микроконтроллера в этом не участвует. Помимо расчётов, даже вывод сигнала с ноги МК ложится на плечи счётчика. Это очень важно понимать, потому что ШИМ сигнал не тормозит выполнение кода, так как его генерацией занимается буквально “другая железка”. На платах UNO/Nano/Pro Mini у нас есть три таймера-счётчика, у каждого таймера есть по два выхода на пины МК, то есть у нас есть 2*3=6 пинов, способных генерировать ШИМ сигнал. Для генерации ШИМ у нас есть готовая функция analogWrite(pin, duty)

  • pin – пин, являющийся выводом таймера. Для Нано/Уно это пины D3, D5, D6, D9, D10, D11. На некоторых платах они помечены * звёздочкой, а вообще для определения ШИМ пинов на любой другой модели Ардуино достаточно загуглить распиновку
  • duty – заполнение ШИМ сигнала. По умолчанию все “выходы” ШИМ у нас 8-битные, то есть duty может принимать значение с “разрешением” 8 бит, а это 0-255

Совместим эти знания с прошлым уроком и попробуем менять яркость светодиода, подключенного через резистор к пину D3. Потенциометр подключен к пину A0

Примечание:

    Делать ШИМ пин как выход через pinMode() необязательно, т.к. это уже встроено в analogWrite() (код ядра, строка

Рассмотренный пример меняет яркость светодиода в зависимости от положения рукоятки потенциометра. Пару слов о “стандартном” ШИМ сигнале – мы получаем его с такими настройками, какие нам даёт библиотека Arduino.h, а настройки эти сильно занижены по сравнению с возможностями Arduino. Про “улучшение” ШИМ мы поговорим позже, а сейчас давайте глянем на характеристики ШИМ “из коробки”:

ТаймерПиныЧастотаРазрешение
Timer 0D5 и D6976 Гц8 бит (0-255)
Timer 1D9 и D10488 Гц8 бит (0-255)
Timer 2D3 и D11488 Гц8 бит (0-255)
Читайте так же:
Какие электроды нужны для сварки нержавейки

Это весьма плачевные цифры, особенно по частоте. Все таймеры приведены под одну гребёнку, чтобы пользователь не думал не гадал и лишнюю документацию не изучал. К изменению частоты и разрядности ШИМ мы вернёмся в отдельном уроке, а пока что можете посмотреть данный урок в видео варианте.

Видео

О проверке импульсных цепей питания с помощью осциллографа

Для питания современной вычислительной техники в основном используют питающие напряжения +12, +5, +3.3 вольта (постоянный ток), формирующиеся блоком питания. Электронные компоненты, установленные на видеокартах, материнских платах часто требуют других номиналов питающих напряжений. Чаще всего вольтаж, необходимый для их работы, формируется путем понижения питающего напряжения до нужного значения.

При питании маломощных компонентов нет необходимости обеспечивать высокую эффективность работы схем преобразования входного питающего напряжения, так как потери мощности достаточно мизерные. В связи с этим маломощные узлы (например, микросхема флеш-памяти Bios) запитываются с помощью цепей прямо (линейно) преобразующих питающее напряжение до нужного номинала.

При питании мощных электронных компонентов, таких как процессор (видеоядро) и оперативная память, необходимо обеспечить высокую мощность от источника питания. Если величина потерь будет высокой (при низком КПД цепей питания), то будет происходит излишний нагрев устройства, а также расходоваться лишние средства на оплату электроэнергии.

Для обеспечения высокой эффективности работы питающих цепей большой мощности используются схемы, работающие в импульсном режиме. Это делается для сохранения компактных размеров устройств и увеличения КПД.

Пример использования ШИМ-преобразования напряжения в импульсном блоке питания:

В статье Как работает VRM материнских плат рассматривались некоторые особенности работы фаз питания, использующихся в современной вычислительной технике. В данной статье динамические процессы, происходящие в фазе питания, рассматриваются с другой точки зрения. Эти знания помогут не только при ремонте неисправных устройств, но и помогут осуществлять более осмысленную эксплуатацию компьютерной техники.

О работе фаз питания, работающих в импульсном режиме

В импульсных цепях фаз питания напряжение от блока питания используется не постоянно, а периодически, с помощью коммутации ключевыми транзисторами:

Благодаря этому на нагрузке появляется не все питающее напряжение, а лишь его часть. Это позволяет понижать вольтаж до нужного значения при сохранении достаточно высокого КПД.

При работе большинства импульсных цепей питания используются коммутационные ключи на мощных полевых транзисторах, управляемые микросхемой, формирующей управляющие импульсы широтно-импульсной модуляции (ШИМ), длительность которых меняется в зависимости от напряжения на выходе.

Чем больший вольтаж нужно получить на выходе — тем дольше должны быть открыты ключевые транзисторы, соответственно должен дольше длиться управляющий импульс:

Чем большая частота используется при работе, тем больше энергии накапливается в катушке индуктивности, что позволяет значительно уменьшить ее размеры. Слишком сильному увеличению частоты препятствует значительное увеличение реактивного сопротивления проводников на высоких частотах и другие сложности, присущие ВЧ-технике.

Сбалансированная работа схем импульсного преобразования требует использования ключевых транзисторов с наименьшим внутренним сопротивлением в момент рабочего цикла, задействования сглаживающих, фильтрующих (блокировочных) конденсаторов, использования цепей обратной связи и ряда других узлов/компонентов.

Уменьшение пульсаций (Ripple) осуществляется с помощью электролитических накопительных конденсаторов, а ВЧ-шумов (Noise) — с помощью блокировочных:

Использование некачественных электронных элементов, огрехи при сборке, перегрев, старение электронных компонентов иногда приводят к выходу из строя фаз питания. Так как через них проходят большие токи, то последствия от их выхода из строя могут привести к возгоранию, а также повлечь за собой другие компоненты, включая дорогостоящие процессор/память.

При поиске неисправностей фаз питания нужно понимать пути прохождения тока через их ключевые транзисторы, а также его величину. Полную картину процессов, происходящих в фазах питания невозможно получить без осциллографа.

Проверка напряжения и тока на выходе импульсного источника питания на наличие пульсаций и шума с помощью двухканального осциллографа:

При изучении конкретной схемы нужно понимать, как проходят токи, напряжения и управляющий сигнал на фазе питания.

Как проходят токи через транзисторы верхнего и нижнего плеча фаз питания?

Фаза питания импульсных источников питания работает в два цикла, при которых ток проходит поочередно через транзистор(-ы) верхнего и нижнего плеча.

Читайте так же:
Кто и как усовершенствовал лампу накаливания

Упрощенная схема фазы питания с двумя полевыми транзисторами:

При открытом верхнем ключе (первый цикл работы, ключевой транзистор нижнего плеча при этом закрыт) ток проходит по цепи: плюсовой вывод источника питания (в данном случае +12 вольт) — транзистор верхнего ключа T1 — катушка индуктивности L — нагрузка Rн — общий провод (минус от источника питания).

На протяжении второго цикла работы открывается нижний ключевой транзистор T2 (верхний закрывается), а ток проходит по цепи: накопительная катушка индуктивности L — нагрузка Rн — транзистор нижнего ключа T2 — катушка индуктивности L.

Во время второго цикла работы источником энергии является дроссель (катушка индуктивности L), отдающий электричество, накопленное во время первого цикла.

Сглаживание пульсаций на выходе фазы питания происходит за счет накопления электрической энергии в LC-элементах (конденсатор С на схеме выше).

Визуализация прохождения тока в динамике есть в ролике Ток через нижнее и верхнее плечо шим контроллера на Youtube.

Для согласования работы различных электронных элементов, обеспечения стабильности выходного напряжения, защиты, контроля и управления используются дополнительные компоненты.

Как правило, в фазах питания видеокарт и материнских плат используется по два мощных транзистора нижнего плеча и один — в верхнем плече. Это связано с тем, что ток, проходящий во время первого цикла работы значительно больше, чем при работе от накопительного дросселя. В связи с этим обычно используются более мощные транзисторы нижнего плеча, обычно работающие параллельно, что увеличивает допустимый рабочий ток и снижает сопротивление сток-исток (Rds) во время рабочего цикла (в открытом состоянии).

Транзисторы верхнего ключа пропускают меньший ток, но должны работать с большей частотой. Поэтому для них более важна скорость открытия td(on) и закрытия td(off), чем допустимый ток.

Проверка работоспособности транзисторов фаз питания рассматривается в статьях О проверке полевых транзисторов импульсных цепей питания, а также Устранение проблем с запуском материнской платы. Для проверки работы фаз питания в динамике нужно использовать осциллограф.

Проверка напряжений и токов в цепи с помощью осциллографа

Проверка бросков (пускового) тока (inrush current) осциллографом может осуществляться на токовом резисторе (шунте) и с помощью токового щупа.

Изучение формы тока в цепи с помощью токового шунта:

Для проверки сдвига фаз между током и напряжением в электрической цепи нужно использовать двухканальный осциллограф.

Пример проверки работы транзистора фазы питания с помощью двухканального осциллографа:

На приведенной выше схеме производится одновременное измерение формы напряжения и тока на выходе полевого транзистора. Для изучения напряжения минус щупа (Diff Probe) подключается непосредственно к истоку (source), а плюс — к стоку (drain) ключевого MOSFET-транзистора. Щуп Current Probe (токовые клещи) второго канала показывает форму пульсирующего (перменного) тока в цепи.

Кроме токового щупа изучить форму тока в цепи можно путем подключения второго канала осциллографа к токовому резистору Rт (шунту) в составе исследуемой цепи:

Для исследования сдвига фаз между током и напряжением на двухканальном осциллографе с использованием токового резистора используют следующую схему подключения:

В приведенной выше схеме первый канал измеряет напряжение на выходе источника питания, а второй — напряжение на токовом резисторе (сигнал на нем при изучении сдвига фаз нужно инвертировать из-за встречного включения относительно первого канала). Синхронизация прибора в данном случае осуществляется от первого канала, так как вольтаж U Rт значительно меньше напряжения на первом канале, что ухудшило бы условия работы прибора при использовании второго канала для синхронизации.

Чем больше сопротивление токового резистора, тем большее на нем падение напряжения. Таким образом, в цепях с невысоким вольтажом можно использовать резисторы высокого сопротивления, что обеспечит лучшую чувствительность при проведении измерений.

При проверке обязательно нужно обеспечить гальваническую развязку систем питания осциллографа и проверяемого устройства. Кроме того, при использовании двухканального осциллографа нужно исключить ситуации, когда в исследуемую схему щупами осциллографа (например, общим проводом разных каналов) вносятся изменения.

Правильное и неправильное подключение двухканального осциллографа (масса обеих каналов должна быть подключена к одной общей точке):

Проверка формы напряжения, которое формируется на выходе источника питания с помощью осциллографа:

Проверка работы ШИМ-контроллера

При проверке работы микросхемы ШИМ в первую очередь нужно проверить ее выходное сопротивление (между контактами GND и OUT) — как правило, оно должно быть очень большим, близким к бесконечности (при этом на измерения не должны оказывать влияние окружающие элементы). Если при исправном ключевом полевом транзисторе на выходе ШИМ-контроллера (не выпаянного из платы) малое сопротивление (ниже одного килоОма) — то микросхема пробита.

Читайте так же:
Выбор компрессора для покраски

При выходе из строя силовых транзисторов, нужно проверять исправность не только микросхемы ШИМ-контроллера, но и ее обвязку, так как элементы выходных цепей часто оказываются неисправными при пробоях MOSFET-ов.

Правильно работающий ШИМ-контроллер при импульсном преобразовании напряжения должен формировать сигнал управления, имеющий одинаковую периодически изменяющуюся форму. Этот сигнал через драйверы попеременно открывает и закрывает ключевые полевые транзисторы верхнего и нижнего плеча каждой фазы питания. Обычный мультиметр не может корректно отображать сигнал на ШИМ-контроллере, так как он имеет слишком высокую частоту. Поэтому для изучения сигнала, формируемого ШИМ-контроллером нужно использовать осциллограф, который фактически является вольтметром с продвинутыми функциями.

При проверке ШИМ-контроллера можно использовать следующую последовательность действий:

  • подать на ШИМ-микросхему проверяемого устройства от внешнего источника питания (лабораторного блока питания) необходимое ей питающее напряжение с ограничением тока;
  • проверить референсное напряжение на выводе VREF, оно должно соответствовать номиналу (согласно даташиту);
  • проверить стабильность референсного напряжения при изменениях питающего напряжения от лабораторного источника питания в пределах, соответствующих Datasheet;
  • осциллографом проверить сигнал на выходе частотозадающей цепи ШИМ-контроллера, которое должно оставаться в пределах нормы даже при изменениях питающего напряжения в заданных пределах;
  • проверить на осциллографе импульсы, идущие на ключевой транзистор фаз питания с выхода PWM-контроллера.

Вам также может понравиться

Блок питания Vinga VPS-1200Pl — недорогая платина для мощных компьютеров

Картинка для статьи о выборе видеокарт для майнинга

1 марта, 2020

Анализ сигналов широтно-импульсной модуляции

Анализ сигналов широтно-импульсной модуляции — RTM3004

Широтно-импульсная модуляция (ШИМ) традиционно используется для эффективного управления импульсными источниками питания на фиксированной частоте. Она применяется во многих типах источников питания в промышленных системах управления, силовой электронике и цифровой связи. Таким образом, ШИМ является широко распространенной технологией, используемой при проектировании цифро-аналоговых преобразователей, например, аудиоусилителей класса D, источников питания и инверторов постоянного тока, например, частотно-регулируемых приводов (ЧРП) двигателей постоянного тока и трехфазных электроприводов. В частности, разностные сигналы в мостах или многофазных электроприводах содержат биполярные сдвоенные импульсы, которые создают серьезные трудности для инженеров при разработке и тестировании.

Биполярный сигнал ШИМ, захваченный с помощью функции запуска по длительности по отрицательному импульсу (отображается в виде радужной осциллограммы; красный цвет указывает на частое возникновение)

Биполярный сигнал ШИМ, захваченный с помощью функции запуска по длительности по отрицательному импульсу (отображается в виде радужной осциллограммы; красный цвет указывает на частое возникновение)

Биполярный сигнал ШИМ, захваченный с помощью функции запуска по длительности по отрицательному импульсу (отображается в виде радужной осциллограммы; красный цвет указывает на частое возникновение)

Решение компании Rohde & Schwarz

Быстрый и простой способ получить общую картину ШИМ-сигнала — использовать функцию послесвечения осциллографа. Использование послесвечения может дать представление о типе присутствующих в сигнале импульсов. Кроме того, цветовая градация показывает области наибольшей активности сигнала.
Тем не менее, послесвечение и цветовая градация не обеспечивают детального анализа. Модулируется ли помимо длительности период? С какой частотой повторяется цикл модуляции? Сколько длительностей каждого значения встречается? Эти сведения необходимы при разработке различных электронных модулей, таких, например, как понижающие преобразователи, которые используются в источниках питания, схемах питания процессоров или зарядных устройствах.
Чтобы получить эту информацию, необходимо использовать методы более глубокого анализа.
Функция отслеживания осциллографов R&S®RTM3000 и R&S®RTA4000 способна демодулировать ШИМ-сигнал и извлекать основной сигнал модуляции в виде осциллограммы трека. Осциллограмма трека формируется из измеренных значений, расположенных в порядке времени их регистрации при захвате данных. Данный инструмент анализа отображает результаты любого заданного значения в зависимости от времени, обеспечивая четкое представление об изменении параметров ШИМ при измерении в течение относительно длительного интервала времени. В результате появляется возможность оценить правильность отслеживания и степень линейности в ШИМ-регуляторах/контроллерах.
Образец в функции отслеживания осциллографов R&S®RTM3000 и R&S®RTA4000, интегрированный в блок матопераций, позволяет задавать верхний (однополярный сигнал) и нижний (биполярный сигнал) пороговые уровни для демодулируемого сигнала.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector