Hydratool.ru

Журнал "ГидраТул"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие диоды нужны для диодного моста. Наиболее важные характеристики диода для выпрямителя тока

Какие диоды нужны для диодного моста. Наиболее важные характеристики диода для выпрямителя тока.

Диодный мост используется там, где есть необходимость в получении постоянного тока из переменного. То есть, если взять самый обычный трансформаторный блок питания, то в его основных элементах будет присутствовать – понижающий трансформатор (с железным магнитопроводом), диодный выпрямительный мост, фильтрующий конденсатор (электролит относительно большой емкости). Силовой трансформатор из более высокого сетевого напряжения, величиной 220 вольт, делает более низкое (стандартными напряжениями являются 3, 5, 6, 9, 12, 24 вольта). Но, с выхода этого трансформатора выходит (так же как и входит) переменный ток. И для того, чтобы из переменного тока сделать постоянный, то есть его выпрямить, и используется диодный мост. Но, на выходе моста мы получим постоянный ток, который будет иметь форму скачков напряжения. Эти скачки сглаживаются фильтрующим конденсатором электролитом.

как правильно подобрать диоды для выпрямителя, диодного моста

В этой теме давайте с Вами рассмотрим, как именно правильно подобрать диодный мост, и на какие основные и важные параметры, характеристики в первую очередь обращать внимание. Как известно, диодный мост состоит из четырёх одинаковых диодов, спаянных определенным образом (схема диодного моста). Для примера возьмём такой популярный диод, как 1N4007.

1 » Максимальный долговременный прямой ток.

на какой ток должен быть рассчитан диод для выпрямителя, мостаМаксимальный долговременный прямой ток – это одна из наиболее важных характеристик диода. К примеру, у диода (1N4007) этот ток равен 1 ампер. Это значит, что при температуре не выше 75 °С данный диод спокойно может через себя пропускать силу тока до 1 ампера без ущерба для себя (не получая тепловой или электрический пробой). Ток выше 1 ампера уже грозит увеличением вероятности пробоя и последующего выхода из строя (либо при сгорании он станет диэлектриком, то есть его внутреннее сопротивление уже будет бесконечно большим, или же после сгорания он, наоборот, станет проводником, у которого сопротивление станет очень малым). При выборе диодов для мостов и готовых диодных сборок мостов нужно делать некий запас по току. Например, Ваш блок питания должен выдавать на выходе максимальный ток 0,5 ампера, и поставив диодный мост на 1 ампер мы получим 50% запас по току, что обеспечивает на дополнительную защиту от случайных токовых перегрузок до 1 ампера. Это позволит обеспечить дополнительную надёжность работающего диодного моста в блоке питания.

2 » Максимальное обратное напряжение диодов в диодном мосте.

на какое обратное напряжение должен быть рассчитан диод для диодного моста, выпрямителяМаксимальное обратное напряжение диодов – это та максимальная величина амплитудного напряжения, которое будет приложено к диоду при его обратном включении. Напомню, что обратное включение диода, это когда плюс источника питания подсоединяется к минусу (катоду) диода, а минус источника питания подсоединяется к плюсу диода (аноду). То есть, наоборот, плюс к минусу, а минус к плюсу. При этом подключении (обратном) диод находится в закрытом состоянии, его сопротивление бесконечно большое. Следовательно, максимальная амплитуда напряжения оседает на диоде. Максимальное обратное напряжение у нашего (к примеру взятого) диода 1N4007 равна 1000 вольтам (1кВ). Это значит, что диодный мост, собранный на таких диодах может выдерживать амплитудное переменное напряжение аж до 1000 вольт. Напряжение выше этого значения уже, как и в случае с током, увеличивает вероятность электрического пробоя диода, с последующим выходом его из строя. При подборе диода по этой характеристики также делайте некий запас (от 25% до 100%, а то и более). Хотя 1000 вольт это и так достаточно много!

3 » Максимальная рабочая частота диода.

какая рабочая частота должна быть у диода для выпрямителя, мостаМаксимальная рабочая частота диода – это наиболее высокая частота, на которой диод (диодный выпрямительный мост) может работать не теряя свои номинальные характеристики, функционировать (переходить из закрытого состояния в открытое и обратно) с максимальный быстродействием, сохраняя свою надёжность. Наш диод серии 1N4007 имеет максимальную рабочую частоту 1 мГц. Это достаточно высокая частота. Работая в схеме обычного блока питания (запитываемого от сети с частотой 50 Гц) этих диодов более чем будет достаточно, касательно этой характеристики. И даже они нормально будут работать в схемах импульсных БП, где обычно используется частота около 10-18 кГц.

4 » Интервал рабочих температур диода.

максимальная температура диода для выпрямителя, мостаИнтервал рабочих температур диода, что будет работать в схеме диодного моста – это температурная характеристика диода. Она говорит о том, что в определённом диапазоне температур диод будет нормально работать, и его другие параметры останутся в рамках допустимого (поскольку температура полупроводника влияет на электрические характеристики, например изменением внутреннего сопротивления диода). У диода 1N4007 интервал рабочих температур лежит в пределах -65…+175°С. При очень низких температура вряд ли в быту Вы будете использовать диодный мост, а вот высокая температура легко может образоваться при прохождении большой величины тока. Причем, как известно, большинство диодов, и мостов сделаны из кремния. Кремний имеет свою критическую температуру, после которой он начинает необратимо разрушаться. Эта температура около 150-180°С. Работа диода на предельных температурах, это также не совсем хорошо. Нормальной температурой для работы полупроводников можно считать от 0 до 60 °С.

5 » Падение напряжения на диоде.

какое падение напряжения на диоде в мосте при прямом включении на выпрямителеПадение напряжения на диоде – это то напряжение, которое присутствует на диоде при его прямом включении. Как я ранее говорил о обратном напряжении диода, так вот прямое включение диода, это когда плюс диода (его анод) подключен к плюсу источника питания, а минус диода (его катод) подключен к минусу источника питания. При таком подключении диод находится в открытом состоянии, через него нормально проходит ток. Но даже в открытом состоянии диод имеет своё некоторое внутреннее сопротивление, которое и вызывает определенное падение напряжения на этом диоде. К примеру на нашем диоде 1N4007 при токе в 1 ампер падение напряжения составляет около 1,1 вольта. В общем это самое падение напряжения у диодов из кремния лежит в пределах от 0,6 до 1,2 вольта. На это падение напряжения влияет и сила тока, которая проходит через этот диод. А в целом, чем меньше это самое падение напряжения на полупроводнике, тем меньшая мощность на нём оседает, тем меньше он будет грется, тем лучше (для некоторых схем очень важно, чтобы было как можно меньшее падение напряжения на диоде).

Читайте так же:
Как устроен заклепочник ручной схема

6 » Максимальный импульсный ток.

Максимальный импульсный ток диода. Этот пункт логичнее было указать вторым, но я его опустил по причине упорядочивания по важности характеристик диода. Итак, первым пунктом у нас было максимальный долговременный ток, то есть ток, величина которого постоянна во времени. Импульсный ток уже характеризует амплитудное значение силы тока. Во времени это ток может меняться, и в некоторые моменты времени быть равен нулю. Поэтому общая мощность, которая будет оседать на диоде при прохождении через него импульсного тока будет меньше, чем та, которая была бы при долговременном токе. К примеру, для диода 1N4007 при длительности импульса 3.8 мс величина тока равна 30 ампер. И тут мы видим ощутимую разницу. Если при длительном токе диод может выдерживать до 1 ампера, то при импульсном это значение увеличилось аж в 30 раз.

Помощь электриков.

Камрады, подскажите как подключить понижающий транс 220/12
Я, так понимаю, к толстым проводам подключать 220, а с тонких будет выходить 12.
Тоесть получается, что н2 к2 — это вход, а н1 к1 — это выход?
А вот есть ли значение, куда фазу подключать, а куда ноль?
Хочу печку жигулёвскую подключить. Думаю пойдет такой?

Хотя написано U1 — это 220, а U2 — это 12 вольт.
В общем поможите люди добрые.

не наоборот тонкие 220

Наоборот, тонкие вход.

А фаза — ноль, есть разница куда совать?

ну да тонкие это вход, там же написано U1 и соответственно для 220 Н1, К1. разницы нет т.к. переменка

А она будет работать от переменного напряжения?Диодный мост имхо нужно ставить.

Шалим! А ты что хочешь печку без выпрямителя включать?

Блин, а я думал, что там постоянный на выходе. К нему ещё выпрямитель нужен?
Блин, проще было купить вытяжку на 220.

да не ты чо, мосты/диоды ведро пять копее дел на минут 10 дольше чай кипятится будет

Шалим что за печка? Автомобильная? Что за нагреватель? Какой мотор?

Да поддув для горна мучу из печки жигулёвской.
Где эти диодные мосты продаются? Транс через инет заказал, сегодня привезли. А где выпрямитель взять?

Ясно. Что на моторе написано. Мощность сколько Ват или ток в Амперах?
Шильдик можешь сфотать?

Ну зачем в крайности вдаваться, диодов можно найти и бесплатно, и за милион баксов половину. В общем то достать четыре диода, или мост готовый я думаю в настоящее время не проблема, ходя если глушь деревенская то наверно будет тяжело. Щалим по ходу хочет не печку а вытяжку сделать с моторчиком от печки, тут подключить пол беды наверно, надо «пропеллер» подобрать )))))

о не успел, если поддув, скорее пойдет но что бы диод подобрать нужно знать что на моторе написанно, ток/мощность

Добрый вечер. Диодный мост можно купить в авто-магазине или из старого генератора вынуть. Болт который к замку зажигания и акомулятору подключен -плюс ,другая пластина моста минус, маленькие болтики с гаечками в середине моста ,их три штуки, подключить к трансформатору, один свободный останется.Толстый провод скорее всего 12 вольт. Если есть чем померить сопротивление, то обмотка с большим сопротивлением сетевая.

На моторе ни фига ни чего не написано, бо старый. Но работает исправно.
Подключял от зарядного устройства для автомобильных акб. Вот с него хорошо работает, но не хочу его использовать напостоянку. До этого подключал от другого трансформатора. Зарядка тоже какая то. Поработал 5 минут и сдох. Азадачился трансом, а оказалось, тоже не всё так просто.

Да, печка от классики жигулей.

Рискну преположить о мощности мотора. ну чисто из опыта более 60Вт он там буть не может. При 12 Вольтах это 5 А. Вполне подойдут диоды Д242, Д242А, Д231 и подобные на 10А. Стоят действительно копейки рублей по 30 за штуку в Орле. Выглядят вот так
Штучку с надписью МБМ называют конденсатор, он не нужен.
Спаять как на рисунке

Читайте так же:
Выбор инверторного сварочного аппарата для дома

maxx2000 Спасибо за схему, тока я в ней ни фига не понимаю. Мне бы попроще нарисовать)))

Саш, хотел купить у вентиляционщиков, у них и рукава есть и моторы, но у меня уже валяются два мотора с рукавами готовые от жигулей, надо же их куда то девать))) вот и заморочился.)))

Да что вы, товарищи. Диодный мост уже залитый в пластиковый брусочек с четырьмя выводами. На токи разные есть.10-50 А.Цена до 100 рублей. В Москве конечно проще, радиорынок. А в других городах радиомагазины. Или импортная радиотехника, такие мосты уже лет 15 не дефицит.

От трансформатора два толстых провода на мост, а с него с других выводов два провода выход 12В.
Игорь, так вы из Москвы? Митинский рынок и нет проблем.

Тоже , наверное вариант. Спасибо.

Да не вопрос можно КВРС5010 поставить, только нет гарантии что он без радиатора не сгорит. А диоды поставил и забыл.
Шалим куда проще схема-то? Там диоды отрисованы как в жизни и нарисовано как соединить проводками. Ну хочешь я куплю, спаяю и вышлю. Ещё недельку подождёшь)

Хочу)))
С меня, естественно, презент)))

Адрес в почту или в личку пришли куда слать.

В Жигулях предохранитель на печку 16 А стоял , если не ошибаюсь.
Ну и вариатор печки от жигулей тоже не помешает (раз пошла такая пьянка ))
Только ставить его нужно строго в трубу, где будет воздух гнать, иначе сгорит.
Стоит 3 копейки , получаем 3 скорости наддува.

Вариатор вещь хорошая, но не обязательная. Стоит шаровой кран, прекрасно справляется. Хотя есть мысли, поставить регулируемый выключатель света, что бы не гудел сильно)))

Мысль хорошая, реализация стоит копейки: https://ru.aliexpress.com/item. st=searchweb0_0 ,searchweb201602_4_10065_10068_10000009_10084_10083_10080_10082_10081_10060_10062_10056_10055_10037_10054_10059_10032_10099_10078_10079_10077_10000012_10093_10103_10073_10102_1000 0015_10096_10052_10108_10053_10107_10050_10106_10051,searchweb201603_3,afswitch_4_afChannel,single_sort_0_default&btsid=ec4e9213-aefc-45f3-a582-d2cb5df5c271

А сколько стоит регулятор на эту улитку?

он нафиг не нужен, там заслонкой регулируется сброс воздуха, а если мало этого сброса, то можно и в трубе сделать дополнительный сброс. Вентилятор то отличный, дует не слабо.

Саш, тут регулятор нужен, скорее только для того, что бы сильно не выл мотор.
Мощность можно отбирать и без вариатора.

вот кстати нашёл на ютубе . слышно как работает.

с блок питания компьютерного диодный мост выдернуть, чего а этого старья в наш компьютерный век до черта валяется

Да в принципе наверно и выдергивать ни чего не стоит, можно целиком блок питания взять там наверняка есть выход 12 вольт. Я думаю куча народу с форума включая меня могут спаять мост и выслать, если что обращайтесь, но наверно с блоком питания от ПК идея мне больше нравится

+12 там точно есть а ещё +5 и помойму +3 или -3, от только ни целых ни горевших днём с огнём не найдёшь, умельцы давно расчухали пользу импульсный бп от компа

а по сабжу, про транс сказали всё правильно
про мост, если нужно то мосты есть готовые на 10А 600В, там 4 вывода, 2 помечены

собственно переменка к трансу, 2 соответственно + и -, заблудиться в них крайне трудно, только эти мосты на граничных нагрузках нада на радиатор сажать, но думаю найдёшь «массивный» кусок железки и болтик на 3

если нужно пиши в личку, отправлю .

Игорь, магазин Квант возле метро Шоссе Энтузиастов. 50 метров от метро.
Выходить и идти по указателям к МЦК(кольцо которое).

До м.»Щелковская» минут 15-20

Там сел в вагон и по прямой без пересадок с книжкой час м. «Волоколамская» пешком пересечь квартал минут 7, и вот они блага цивилизации.

Можно использовать выпрямитель от автомобильного генератора, если есть конечно, покупать его в автомагазине для таких целей дороговато.

1.Предложенный регулятор с Али от 10 до 60 вольт, а мотор ну максимум до 16В можно питать без последствий, нужен от 0 до 15В.
2.Диодный мост из компьютерного блока питания там максимум на 6А и то с радиатором и обдувом, без радиатора больше 2 А не потянет длительно.
3.Мост КВРС5010 как всё китайское, пишут максимальный ток с учётом радиатора соответствующего объёма. Вроде 50А, а по факту более 10 с радиатором без обдува не тянет, у меня такой в блоке питания стоит на станке, переделал на промышленные диоды Д112 и забыл про лишний источник тепла.
4. Мост от генератора вариант шикарный, диоды компактные, мощные, но всё равно нужно колхозить и просить кто бы переделал, цена.

Я бы ставил сначала КВРС5010, клеммы на нём автомобильные, менять легко в случае чего, прикрутил бы его болтом к металлическому столу и надеялся на хорошую партию, затем по результатам работы принимал решение.
Да кстати, если уж нужен регулятор то лучше штатного в условиях кузни ничего не будет.

Игорь к тебе вопрос. Ты будешь куда ни будь упаковывать этот импровизированный блок питания? Место для диодного моста там будет или мост в коробку засунуть?

Что такое диодный мост

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Содержание статьи

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Читайте так же:
Какой дифавтомат поставить на ввод в дом

Схема диодной сборки из 4-х диодов

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Устройство диода

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Схема диодного моста

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

Пульсации диодного моста

Работа диодного моста

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

Читайте так же:
Бактерицидная кварцевая лампа для дома

Диодный мост: что это такое и зачем он нужен?

Доидный мост

Диодный мост? Это совсем не то, что Крымский. Это такой маленький диодный мостик, схема которого строится из небольших совсем электронных устройств — диодов. Их мы собираем даже своими руками. Да, соберите своими руками и увидите, что это легко и быстро, надо только знать, из чего и для чего. Он состоит из диодов.

Что такое диоды

Диоды — это электронные устройства с двумя электродами («ди» — два). Анод и катод.

Диод

Раньше, в эпоху стеклянных электронных вакуумных ламп, это была самая простая из ламп. В ней непосредственно около катода располагалась нить накаливания, как в лампочке. Катод от этого разогревался, и из него начинали выпрыгивать электроны все быстрее и быстрее. А кроме напряжения накала к электродам было приложено рабочее напряжение. И если на катод подать минус, а на анод плюс, то электроны от катода начинают отталкиваться, а к аноду притягиваться. Так как этому процессу в вакууме ничто не мешает, через вакуум и побежит ток, пропорциональный приложенному напряжению. А если поменять полюса — подать на анод минус, а на катод плюс, ток остановится. Потому что анод холодный, а к катоду теперь приложен положительный потенциал, который возвращает выброшенные накалом катода электроны обратно. Вот так и получился самый первый и самый простой нелинейный электрический элемент. В одну сторону ток он пропускает, а в другую — нет.

Почти такая же картина и в полупроводниковых диодах. Только там нет вакуума, а твердая пластинка полупроводника имеет свойство не препятствовать движению электронов в одну сторону и запрещать их движение в противоположную.

Весь секрет в N-P-переходе полупроводника.

Полупроводниковый диод представляет собой пластинку, похожую на плоский кружочек (или квадратик) металла. Но это не металл, а две его стороны имеют чуть разные свойства. Металлы характеризуется тем, что электроны в их кристаллической решетке почти не держатся, вылетают и болтаются между атомами кристалла по любому поводу, самая небольшая температура, заставляющая ядра атомов на своих местах слегка вибрировать, вышибает электроны напрочь и массово. А на этом месте что образуется? Знамо дело, дырка. Так называется атом, потерявший электрон. И получается, что электроны хаотично мечутся по межатомному пространству металла, а дырки тоже мечутся — только уже по самой кристаллической решетке. Потому что если соседний атом «заметит» дырку, он очень просто легким толчком закинет в нее свой электрон. И это можно понять в обратном смысле: получилось, это дырка перескочила из того атома в этот. И так дырки начинают жить тоже своей самостоятельной жизнью и блуждать как им взбредется. А встретится им электрон — может произойти рекомбинация, когда электрон запрыгнет в эту самую дырку. Ну и все, нашел свою судьбу. Только свободных электронов в металле видимо-невидимо, и поэтому стоит приложить к проводнику напряжение — как тут же начнется уже более-менее упорядоченное движение электронов от минуса к плюсу, то есть электрический ток. Соответственно, и дырки побегут, наоборот, от плюса к минусу, то есть как раз так, как люди определили когда-то НАСТОЯЩИМ направлением тока. Определили, еще ничего не зная ни о свободных электронах, ни о дырках.

В полупроводниках картина очень тонкая. Он сам плохой проводник и никудышный изолятор. Потому они так и названы — полупроводники. В них тоже есть свободные электроны и дырки. Только их не так много, как в металлах, а равновесие электронов и дырок нарушают примеси в полупроводнике. Атомы примесей становятся дополнительными источниками в одних случаях свободных электронов, в других — «свободных» дырок. Есть такие атомы, которые в одном случае прихватывают себе лишний электрон и не отпускают его (акцепторная примесь). А на его месте в атоме полупроводника получается дырка и начинает бродить неприкаянно по кристаллической решетке.

А в другом случае атом примеси имеет свойство отдавать свой электрон (донорная примесь), ничего не прося взамен. И пойдет электрон лишний куда глаза глядят.

Первая проводимость названа дырочной — P (positive, положительная), вторая электронной — N (negative, отрицательная).

Но самое интересное, что два типа проводимости могут существовать в одном куске полупроводника. Вот той самой тонкой пластинки, похожей на металл. С одной стороны в нее внедряют донорную примесь, а с другой — акцепторную.

Очень просто: можно на основу из полупроводника — германия или кремния — с одной стороны нанести материал-акцептор, фосфор, мышьяк или сурьму. Температура плавления сурьмы чуть выше 980 ⁰С, а у полупроводников еще выше, около 1200–1400 ⁰С. Атомы акцептора (чаще всего сурьмы, более остальных практичной в обращении) внедряются в кристаллическую решетку полупроводника, делая его полупроводником типа P. Другую сторону обрабатывают алюминием или индием — легкими и плавкими металлами. Достаточно поместить капельку индия, просто капнуть с одной стороны при температуре плавления 430 ⁰С.

Вот и получился у нас знаменитый N-P переход, который ток пропускает в одну и другую стороны по-разному.

И правда, если представить ток как движение заряженных частиц, то в полупроводнике N-типа движутся электроны (их подавляюще больше). А в P-типа — дырки. Причем направление их движений противоположное. Только если в металле они движутся одновременно и независимо — одни туда, другие сюда, то в полупроводнике все не так. В полупроводнике N-типа движутся, в основном, электроны, по полупроводнику P-типа ток создает движение дырок. А вот в N-P переходе эти два вида токов встречаются.

Читайте так же:
Марки легированных сталей и их расшифровка

На границе этих двух типов (границе между полупроводником с примесями одного типа и проводником с примесями другого) электроны вместо дальнейшего движения будут «находить свою судьбу», то есть встречаться с дырками и с ними производить рекомбинацию. Такую зону счастливых электронных пар мы называем «зоной запрета», потому что при рекомбинации атомы примесей становятся ионами (в N-зоне положительные, а в P-зоне отрицательные), и они создают электрическую разность потенциалов, всегда направленную от N проводимости к P проводимости. И вот теперь, если прикладывать напряжение к внешним контактам диода, и если полярность его совпадает с направлением этой разности потенциалов, то ток потечет через диод, а если противоположно ей, то нет. Первое направление (когда к P приложен плюс, а к N минус) называется прямым, второе (когда на P подан минус, а на N плюс) — обратным.

Схема

Прямое направление диода делает его по работе похожим на обычное сопротивление, работающим по закону Ома.

А обратное дает нечто вроде разрыва в цепи, хотя при этом всегда сохраняется некоторый обратный ток, зависящий от других вещей — температуры, радиации.

Вот на таких приборах и строятся выпрямительные мосты.

Выпрямительные мосты

Если подавать на диод переменное электрическое напряжение, которое непрерывно изменяется от некоторого напряжения U+ > 0 до напряжения U< 0, то наш диод начнет «срезать» все напряжения, которые для него будут «обратными».

Работа диода

В случае обычного для наших сетей синусоидального сигнала в результате работы диода получается «полусинусоида» тока (или напряжения в нагрузке).

Синусоидальный сигнал

Весь ток и напряжение в сети нагрузки будет иметь положительное направление, но половина электроэнергии не будет «доходить» до адресата.

Чтобы использовать и вторую половину синусоиды, нужно, чтобы она не срезалась, а меняла знак на противоположный. Вот и получилась схема диодного моста.

Диодный мост: принцип работы

Уже лучше, но мост не является выпрямителем в полном смысле. Напряжение в нагрузку он дает не постоянное, а пульсирующее с двойной частотой.

Если нагрузкой сделаем лампу накаливания, то никаких пульсаций света можем и не заметить.

Лампа накаливания является прибором инерционным, в плане преобразования электричества в тепло и свет. То есть за 1/50 (при переменном напряжении) или за 1/100 (при пульсирующим напряжении от диодного моста) доли секунды ее нить накала не успевает остыть, как уже приходит очередной импульс. В этом случае диодный мостик такой схемы вполне подойдет.

Схема

В результате этого температура спирали во времени представляет собой кривую, сглаживающую кривую напряжения, выходящего из диодного моста. И чем спираль массивнее, тем более сглажена кривая ее температуры. В выпрямительных мостах сглаживание делается конденсатором, которые способны, подобно спирали лампы, накапливать энергию, а потом медленно ее отдавать.

Выпрямительный мост

Выпрямительный мост — это настолько отработанная, привычная и полезная схема, что для нее имеется общепринятое сокращенное графическое обозначение. А как сделать диодный мост — тут вообще все просто. Следует только разобраться с концами диодов — какие плюс и какие минус. На входные два узелка подается переменное напряжение, поэтому к ним подходят как плюс диодов, так и минус: VD1 плюс, VD2 минус —на верхний, VD3 + и VD4 — на нижний. А выходные клеммы от моста получают уже знакопостоянное напряжение, поэтому их плюсы и минусы совпадают с +/- диодов. VD2, VD4 припаяем плюсами на плюсовой выход, VD1, VD3 — минусами на минусовой. Вот и получился выпрямительный диодный мост.

Диодный мост

Такие диодные мосты присоединяют часто к обычному трансформатору от блоков питания, понижающему к 12 вольтам. Диоды в этом случае подойдут любые, лишь бы рабочий диапазон напряжений был немного больше, чем на 12 вольт. Скажем, вольт на 20–35. Особых требований нет, соединения низковольтные, для подключения достаточно обычной спайки.

Схема

Трехфазный диодный мост

Однако делают диодные мосты и высоковольтные. Там все то же самое, только все элементы схемы рассчитываются на те номиналы напряжений, с которыми будет иметь дело диодный мост — с запасом, разумеется. Кроме того, можно сделать его и для трехфазного напряжения. И он оказывается сложнее однофазного не в три раза, а только в полтора.

Подключить диодный мост к трансформатору здесь нужно в трех точках, по одной на каждую фазу. Принципиальной разницы между спайкой диодного моста на три фазы и собранного под одну фазу нет. Разобраться с концами здесь почти так же просто. Здесь плюсы одних трех диодов и минусы других подключаются к выходам, после этого попарно спаиваются плюсы с минусами верхней и нижней тройки диодов, и в эти же три точки подаются фазы. Все, вы его собрали.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector