Hydratool.ru

Журнал "ГидраТул"
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Окружность. Круг. Приемы работы циркулем, использование трафаретов

Окружность. Круг. Приемы работы циркулем, использование трафаретов

Формы работы: индивидуальная, групповая.

Ход занятия:

Организационный момент:

Проверка готовности к уроку.

Повторение:

Анализ графического упражнения.

Новый материал:

Рубрика «Это интересно!»

С незапамятных времен человек использовал в своей жизни простейшие геометрические построения. Одним из таких построений является деление окружности на равные части. Примеров можно привести много. Превращение колеса из сплошного диска в обод со спицами поставило человека перед необходимостью распределить спицы в колесе равномерно.

С делением окружности неразрывно связано построение правильных многоугольников. Правильные многоугольники встречаются в древнейших орнаментах у всех народов.

В декоративно- прикладном искусстве дизайнеры, ювелиры и представители многих других профессий с успехом применяли деление окружности, создавая прекрасные произведения. Это ордена, медали, монеты и ювелирные украшения.

Орден Красной Звезды
Орден Отечественной войны

Самым распространенным примером применение деления окружности на равные части является создание логотипов, эмблем, товарных знаков различных фирм. Иногда достаточно увидеть эмблему на капоте или крыле автомобиля и безошибочно назвать марку.

Показ наглядных пособий использования геометрических построений в строительстве, архитектуре, машиностроении, а также природные явления.

Построение круга, окружности.

Круг – это часть плоскости, ограниченная окружностью.

Окружность – замкнутая плоская кривая, все точки которой равноудалены от центра.

Чтобы изобразить круг, достаточно взять блюдце или тарелку и обвести.

Для построения окружности необходимо найти центр. Из центра циркулем провести окружность.

Этапы построения:

  1. Начертить квадрат.
  2. Разделить стороны квадрата на две равные части, отметить буквами или цифрами.
  3. Через полученные точки провести центровую линию (штрихпунктирную) Сначала горизонтальную, затем вертикальную.
  4. Пересечение линий отметить точкой О – центр окружности.
  5. В точку О поставить ножку циркуля и начертить окружность. Центр окружности является также и центром круга.

Запомнить: в центре должны обязательно пересекаться штрихи, проведенных центровых (осевых) линий, а не точки. В окружностях меньших размеров допускается проводить вместо штрихпунктирных линий тонкие линии построения.

Для построения окружностей и кругов используют трафареты.

Демонстрация, показ.

Деление окружности на равные части.

Любая прямая, проведенная через центр окружности, делит эту окружность на две равные части. Две взаимно перпендикулярные прямые, проведенные через центр окружности, делят эту окружность на 4 равные части.

Окружность можно разделить на 8 равных частей, используя линейку или угольники.

Демонстрация, показ.

Если соединить, полученные при делении точки окружности, то мы получим правильные многоугольники.

При делении окружности на 3, 6, 12 равных частей используют не только угольники, но и циркуль. В результате построения можно увидеть правильный равносторонний треугольник, правильный шестиугольник (рисунок 5)

Демонстрация, показ.

Физкультурная пауза.

Закрепление:

Фрагмент из рабочей тетради.

Приготовь для работы циркуль, карандаш с маркировкой Т и ТМ, линейку, трафарет. Все построения выполняй аккуратно.

Используя трафарет с окружностями, изобрази круг.

Для построения окружности необходимо провести штрихпунктирные линии. Эти линии состоят из штриха и точки. При пересечении они образуют центр окружности и являются центровыми или осевыми линиями.

Установи ножку циркуля в центре пересечения осевых (центровых) линий и проведи окружность.

Этапы построения окружности:

  1. Начертить квадрат.
  2. Разделить все стороны квадрата на две равные части, отметить полученные точки.
  3. Через точки провести центровую линию (штрихпунктирную) карандашом с маркировкой Т. Сначала горизонтальную, затем вертикальную.
  4. Пересечение линий отметить точкой О – центр окружности.
  5. В точку О поставить ножку циркуля и начертить окружность.

Центр окружности является также и центром круга.

Запомни:
В центре должны обязательно пересекаться штрихи, проведенных центровых (осевых) линий, а не точки.
В окружностях меньших размеров допускается проводить вместо штрихпунктирных линий тонкие линии построения.

Рубрика «ЗАПОМНИ»: круг, окружность, осевая линия, центровая линия, штрихпкнктирная линия.

Читайте так же:
Инструмент для свп зажима

Как правильно чертить циркулем

Построение эллипса с помощью циркуля. Как начертить эллипс?

Эллипс — геометрическая фигура. В математике имеет весьма занимательные свойства. Но наша задача не рассчитывать фокальные расстояния, а уметь построить эллипс на чертеже. В курсе инженерной графики эллипсы встречаются наиболее часто в трех случаях:
-сечение конуса плоскостью пересекающей ось конуса,
-сечение циллиндра наклонной плоскостью
-изображение окружностей в аксонометрических проекциях (построение изометрической проекции или диметрической проекции)

Если начертить эллипс малого размера от руки и на глаз еще не так сложно, то при необходимости построить эллипс с осями к примеру более 50-60 мм используется специальная методика построения эллипсов — это значительно влияет на конечную красоту чертежа, а остатки построений на нем добавят вам небольшой плюс в глазах преподавателя, даже если он попросит вас их потом стереть. Строго говоря, методик построения эллипсов несколько. Мы рассмотрим только одну из них.

Чтобы не быть совсем абстрактным, я предлагаю начертить эллипс, являющийся отображением окружности в изометрии. Заодно вспомним коэффициенты искажения. Итак, возьмем окружность диаметром 30мм. Такая окружность в изометрии будет иметь вид эллипса с осями 36,6мм и 21,3 мм.

Начнем построение эллипса. На первом этапе необходимо из центра эллипса провести две вспомогательные окружности, диаметры которых будут равны большой и малой оси эллипса. Затем, из центра проведем несколько лучей, так чтоб они пересекали обе окружности. Для удобства отображения я буду рассматривать одну четверть. Количество вспомогательных лучей зависит исключительно от желаемой точности построений и размеров эллипса, в нашем случае это будут 3 луча (рекомендую такое количество лучей для эллипсов с большой осью от 60 и где-то до 120 мм)

На следующем шаге мы получим дополнительные точки эллипса. Для этого, мы поочередно сделаем с каждым лучем следующее: из точки пересечения луча с малой окружностью проведем горизонтальную линию в сторону большой окружности, а из точки пересечения луча с большой окружостью проведем линию до пересечения с только что начерченной горизонталью. Таким образом мы получим точки 2, 3 и 4. Точки 1 и 5 так же принадлежат эллипсу.

Теперь, имея пять точек мы без труда проведем через них кривую. Обратите внимание, что в точке пересечения с осями кривая эллипса строго перпендикулярна им.

Нам осталось лишь достроить оставшиеся три четверти фигуры. Я рекомендую вам не производить аналогичные построения, а аккуратно перенестиотразить точки 2, 3, 4 через оси. Но конечно же, можно и повторить предыдущие шаги для закрепления навыка.

На этом построение эллипса заканчивается. Надеюсь, что нам удалось достаточно подробно и понятно изложить материал, и построить эллипс для вас теперь сущий пустяк. Желаю вам успехов в учебе! Если же что-то катастрофически не получается, или совсем нет времени и сил — вы всегда можете обратиться к нам за помощью в оформлении чертежей.

Вы можете сказать «спасибо!» автору статьи:

пройдите по любой из рекламных ссылок в левой колонке, этим вы поддержите проект «White Bird. Чертежи Студентам»

или запишите наш телефон и расскажите о нас своим друзьям — кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки — и кто-то еще сможет освоить черчение.

А вот это — не реклама. Это напоминание, что каждый из нас может сделать. Если хотите — это просьба. Мы действительно им нужны:

Читайте так же:
Как поставить забор из сетки рабицы видео

Автор комментария: Рустам
Дата: 2011-03-22

Автор комментария: закир
Дата: 2011-05-19

огромное спасибо оч выручили.

Автор комментария: Вова
Дата: 2011-12-15

Автор комментария: Богдан Тарасюк
Дата: 2012-01-13

Автор комментария: ваня
Дата: 2012-01-24

Автор комментария: Виталий
Дата: 2012-05-13

Автор комментария: Леон
Дата: 2012-05-25

Благодарю! Все очень понятно обьяснили.

Автор комментария: антон
Дата: 2012-05-31

спасибо черчу через компас по вашим примерам вроде получается

Автор комментария: Влад
Дата: 2012-10-08

спасибо большое! все понятно. очень помогло

Автор комментария: Илья
Дата: 2012-10-09

но есть же способ проще. просто я его призабыл за пол года поэтому и зашел сюда
Точно, вы правы! Именно поэтому по тексту написано, что есть несколько способов, и мы рассмотрим один из них. Отмечу, что приведенный здесь способ (при достаточном количестве точек) дает максимальную точность построения.

Автор комментария: Женя
Дата: 2012-10-14

Спасибо. Очень помогло!

Автор комментария: Витя
Дата: 2012-10-22

Автор комментария: Нкитка
Дата: 2012-10-26

тупой способ циркулем намного проще и быстрей

А никто и не претендует — всего лишь один из способов. Все зависит от того, какую точность нужно достичь. Я к примеру вообще предпочитаю в САПровских системах чертить. А вы? 🙂

Автор комментария: Татьяна
Дата: 2012-11-04

Автор комментария: Владимир
Дата: 2012-11-24

Спасибо в ремонте очень пригодилось!

Автор комментария: Светлана
Дата: 2012-12-17

Огромное спасибо!Все просто и доступно!
Благодарю за отзыв, Светлана! Слова такого плана меня всегда наводят на мысль: а почему те люди, которые получают от нашего государства деньги за написание методических пособий, делают это не просто, не понятно, и не доступно? Очень надеюсь, что они это не специально

Автор комментария: Женя
Дата: 2013-01-21

а точки от руки соединять? как-то у меня не очень ровно получается.

Тут дело такое. В идеале — после определения некоторого количества точек хорошо было бы соединить их по лекалу. Но я уверен, что для вас такой вариант не станет облегчением, поскольку я не помню, чтоб где-то кого-то учили работать с лекальными линейками. Однако, если они есть под рукой — можете попробовать. Возможно вам удастся подобрать верные кривые. Ну а если нет — то просто старайтесь поаккуратнее соединить от руки. Либо можно увеличить количество вспомогательных точек (после чего возненавидеть построение эллипсов 🙂 ) Главное — не опускайте рук!

Автор комментария: ДАНИИЛ
Дата: 2013-01-21

СЕРДЧЕЧНАЯ БЛАГОДАРНОСТЬ ЗА ВАШ ТРУД

sposibo ochen pomoglo

Автор комментария: рома
Дата: 2013-03-12

Великолепно!) спасибо большое!)

Автор комментария: Анатолий.
Дата: 2013-07-07

Спасибо! Очень понятно и доступно расказано о построение элипса. С геометрией у меня все в порядке, а вот элипсы строить не доводилось. По Вашей методике постою элипс на потолке, теперь точно получится! Спасибо еще раз.

Автор комментария: Павел
Дата: 2013-07-09

Спасибо огромное всен очень понятно объяснено!

Автор комментария: Андраник
Дата: 2013-07-18

Большое спасибо! Выручил.

Автор комментария: Владислав
Дата: 2013-09-04

Спасибо! Потребовалось прорезать точное отверстие под круглый дымоход в наклонной плоскости, Ваш метод построения эллипса очень помог!

Автор комментария: фариза
Дата: 2014-01-09

так просто,только есть один вопрос,можете сказать расстояний между точками (1,2,3,4,5)

Автор комментария: 999
Дата: 2014-02-16

"Теперь, имея пять точек мы без труда проведем через них кривую" Они что издеваются?!

Автор комментария: сережа
Дата: 2014-03-06

как начертить машину в компасе

Автор комментария: Александр
Дата: 2014-03-11

Здравствуйте!Помогите рассчитать половинку элипса или половинку овала .Где длина равна а-4800мм а ширина половинки овала равна b-500мм.Спасибо

Автор комментария: Андрей
Дата: 2014-05-03

Читайте так же:
Горелка насадка на газовый баллончик

Благодарен всё ясно, просто и понятно.

Автор комментария: Светлана
Дата: 2014-05-17

Автор комментария: Majid Shabanov
Дата: 2014-06-17

Большое спасибо! Очень доступном виде обьяснили, без лищных слов.

Автор комментария: arhitektor stroitel
Дата: 2014-07-06

http://oval.ing-grafika.ru/1.html 2 способ посмотрите.Он удобнее вроде.

Автор комментария: Альбина
Дата: 2014-09-28

Cпасибо! Очень доступно изложено) Здорово получилось)))

Автор комментария: наталья
Дата: 2014-10-12

огромное Вам спасибо

Автор комментария: алик
Дата: 2014-11-25

Большое человеческое СПАСИБО

Автор комментария: Юля
Дата: 2014-12-10

Автор комментария: Александр
Дата: 2015-01-06

Принцип построения изложен предельно понятно. Однако, не изложено объяснение того, что в результате проведенных операций должен получиться именно эллипс, а не овал. Я понимаю, что принцип построения эллипса правильный, но нет объяснения почему.

Автор комментария: Роман
Дата: 2015-03-02

Спасибо! Реально доступно объяснили! Очень помогло.

Автор комментария: Міша
Дата: 2015-03-03

Дуже дякую виручили, дуже допомогло)))) +1

Автор комментария: Илья
Дата: 2015-03-19

По поводу "тупой способ циркулем намного проще и быстрей". Это как?

Автор комментария: :O
Дата: 2015-11-25

Черт.. Это так просто!

Автор комментария: Елизавета
Дата: 2016-02-04

СПАСИБО! не была на паре, задали дома по определенным размерам начертить, просто спасли!

Ну вот и замечательно 🙂 Эх, все никак не удается мне подготовить продолжение — еще один-два способа разобрать

Автор комментария: j
Дата: 2016-10-22

Автор комментария: Владимир
Дата: 2017-01-10

Всё просто, спасибо за комментарии.

Автор комментария: Рустем
Дата: 2017-04-17

Автор комментария: Володя
Дата: 2018-01-17

У вас уже заданны большой и малый диаметры зллипса, прошу к данному варианту добавить метод засечек исходя только из данных диаметра круга. С.У.Стенин.

Автор комментария: Александр
Дата: 2018-02-02

Великолепно. просто,доходчиво и без лишней информации!!

Автор комментария: Дамир
Дата: 2018-04-03

Автор комментария: саня
Дата: 2018-06-13

Попробуйте еще. Судя по остальным отзывам — способ «ну очень рабочий!»

Добавьте свой комментарий:

zakaz@trivida.ru

Наша страница в ВК:

Инженерная графика и начертательная геометрия в Вконтакте

Люди порою сильно спешат, и не успевают говорить спасибо. Антон, вспомнила про вас, хотя чертежи с вашей помощью сдала более полугода назад. А ведь поначалу думала, что инженерная графика и чертежи для меня — неподъемная наука. Но по мере выполнения работ, слушая ваши комментарии, я очень даже разобралась, и даже сама вычертила зачетное задание. Вы приятный человек — и это сильно в плюс тем, кому довелось с вами сотрудничать. Желаю вам благодарных студентов 🙂 Александра Р., МГУПИ

Александра, спасибо за ваш рассказ и пожелания! Ради того и работаем 🙂 Всего вам наилучшего!

Построение с помощью циркуля и линейки

Файл:2. Построения с помощью циркуля и линейки.ogv

Воспроизвести медиафайл

Построе́ния с по́мощью ци́ркуля и лине́йки — раздел евклидовой геометрии, известный с античных времён.

В задачах на построение циркуль и линейка предполагаются идеальными инструментами, в частности:

    не имеет делений и имеет сторону бесконечной длины, но только одну. может иметь какой угодно (большой или малый) раствор (может чертить окружность произвольного радиуса) и сохраняет последний раствор, то есть может проводить одинаковые окружности где угодно.

Содержание

Примеры [ править | править код ]

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружности с центром в точках A и B радиусом AB.
  • Находим точки пересечения P и Q двух построенных окружностей (дуг).
  • По линейке проводим отрезок или линию, проходящую через точки P и Q.
  • Находим искомую середину отрезка AB — точку пересечения AB и PQ.

Формальное определение [ править | править код ]

В задачах на построение рассматривается множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку;
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке;
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками;
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.
Читайте так же:
Как клеить сырую резину на камеру

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи [ править | править код ]

    о построении окружности, касающейся трех заданных окружностей. Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений. о построении вписанного четырёхугольника по четырём его сторонам.

Построение правильных многоугольников [ править | править код ]

В 1796 году Гаусс показал возможность построения правильных n-угольников при n = 2 k ⋅ p 1 ⋯ p m cdot p_<1>cdots p_> , где p i >  — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи [ править | править код ]

Следующие три задачи на построение были поставлены ещё древними греками:

     — разбить произвольный угол на три равные части;  — построить ребро куба вдвое большего по объёму, чем данный куб;  — построить квадрат, равный по площади данному кругу.

Лишь в XIX веке было строго доказано, что все эти три задачи неразрешимы при использовании только циркуля и линейки. Доказательство неразрешимости этих задач построения было достигнуто с помощью алгебраических методов, основанных на теории Галуа [1] . В частности, невозможность построения квадратуры круга следует из трансцендентности числа π.

Другая известная и неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис [2] . Эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла, например томагавка. [3]

Допустимые отрезки для построения с помощью циркуля и линейки [ править | править код ]

С помощью этих инструментов возможно построение отрезка, который по длине:

  1. равен сумме длин нескольких отрезков;
  2. равен разности длин двух отрезков;
  3. численно равен произведению длин двух отрезков;
  4. численно равен частному от деления длин двух отрезков;
  5. численно равен квадратному корню из длины заданного отрезка (следует из возможности построения среднего геометрического двух отрезков, см. иллюстрацию). [4]

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1), иначе задача неразрешима из-за отсутствия масштаба. Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной 2 3 ]<2>>> . Из этого факта, в частности, следует неразрешимость задачи об удвоении куба. [5]

Читайте так же:
Torx e8 чем открутить

Возможные и невозможные построения [ править | править код ]

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа — графического решения уравнения определённого типа.

Исходя из возможных построений отрезков возможны следующие построения:

  • Построение решений линейных уравнений.
  • Построение решений уравнений, сводящихся к решениям квадратных уравнений.

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x 3 − 2 = 0 , -2=0,> связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения ( 2 3 ]<2>>> ) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

Ассоциации к слову «циркуль»

/>Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: парламентарий — это что-то нейтральное, положительное или отрицательное?

Слово «циркуль» ассоциируется со словами

Мужские ассоциации к слову «циркуль»

Женские ассоциации к слову «циркуль»

Нейтральные ассоциации к слову «циркуль»

Синонимы к слову «циркуль&raquo

Предложения со словом «циркуль&raquo

  • – Вот смотрите, – начала рассказ бабушка, – для начала я нарисую с помощью циркуля несколько окружностей.

Цитаты из русской классики со словом «циркуль»

  • Перед ним находился стол, покрытый до самого пола. На этом столе возвышались три подсвечника на трех углах стола и лежали на подушках библия, меч, циркуль, треугольник и белый молоток.

Сочетаемость слова «циркуль&raquo

Каким бывает «циркуль»

Значение слова «циркуль&raquo

ЦИ́РКУЛЬ , -я, м. Инструмент, состоящий из двух раздвигающихся ножек и служащий для вычерчивания окружностей и для измерения длины линий. (Малый академический словарь, МАС)

Афоризмы русских писателей со словом «циркуль&raquo

  • О одиночество, как твой характер
    крут!
    Просверкивая циркулем железным,
    как холодно ты замыкаешь круг,
    не внемля увереньям бесполезным.

Отправить комментарий

Дополнительно

Значение слова «циркуль&raquo

ЦИ́РКУЛЬ , -я, м. Инструмент, состоящий из двух раздвигающихся ножек и служащий для вычерчивания окружностей и для измерения длины линий.

Предложения со словом «циркуль&raquo

– Вот смотрите, – начала рассказ бабушка, – для начала я нарисую с помощью циркуля несколько окружностей.

Окончательную доводку ножек циркуля нужно сделать, заточив их поочерёдно на точильном бруске.

На её могучем теле появились два ровных, как бы прочерченных циркулем круга.

Синонимы к слову «циркуль&raquo
  • кронциркуль
  • секстант
  • теодолит
  • астролябия
  • транспортир
Сочетаемость слова «циркуль&raquo
Каким бывает «циркуль»
Морфология
  • Склонение существительного «циркуль»
Правописание

Карта слов и выражений русского языка

Онлайн-тезаурус с возможностью поиска ассоциаций, синонимов, контекстных связей и примеров предложений к словам и выражениям русского языка.

Справочная информация по склонению имён существительных и прилагательных, спряжению глаголов, а также морфемному строению слов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector