Тема: Двухполярный блок питания с одной обмоткой
Тема: Двухполярный блок питания с одной обмоткой
Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
Сообщение от Lapasso
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Домашняя страница
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
Сообщение от Lapasso
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Домашняя страница
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
Сообщение от SemenS
Конденсатор перед одним из выпрямительных диодов не потеряли? Чет сомнения в нарисованной схеме . Бооольшие сумления.
———- Сообщение добавлено 12:29 ———- Предыдущее сообщение было 12:28 ———-
Сообщение от Lapasso
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
Сообщение от .Васильев
- Просмотр профиля
- Сообщения форума
- Домашняя страница
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
Сообщение от .Васильев
Перед диодом? Нет, не потерял. Схему-то не я рисовал, но в моих АС для компа "Dialoq 205" схема именно такая. Работает по сей день. Единственно что сделал, так это заменил диоды на Шоттки и увеличил ёмкости до 6600 мкф на плечо.
———- Сообщение добавлено 13:48 ———- Предыдущее сообщение было 13:41 ———-
Сообщение от stan marsh
- Просмотр профиля
- Сообщения форума
- Созданные темы
Re: Двухполярный блок питания с одной обмоткой
Сообщение от SemenS
Так это импульсный преобразователь. А топик-стартер хочет неимпульсный БП.
———- Сообщение добавлено 13:03 ———- Предыдущее сообщение было 13:01 ———-
Как рассчитать и намотать силовой низкочастотный трансформатор для блока питания УНЧ?
Эта тема возникла в связи с написанием статьи о самодельном усилителе низкой частоты. Хотел продолжить повествование, рассказав о блоке питания и добавив ссылку на какую-нибудь популярную статью о перемотке трансформаторов, но не нашёл простого понятного описания. Что ж поделаешь, всё нужно делать самому. http://oldoctober.com/
В этом опусе я расскажу, на примере своей конструкции, как рассчитать и намотать силовой трансформатор для УНЧ. Все расчёты сделаны по упрощённой методике, так как в подавляющем большинстве случаев, радиолюбители используют уже готовые трансформаторы. Статья рассчитана на начинающих радиолюбителей.
Как определить необходимую мощность силового трансформатора для питания УНЧ?
Я решил собрать простой усилитель мощностью 8-10 Ватт в канале, на самых дешёвых микросхемах, которые только удалось найти на местном радиорынке. Ими оказались – TDA2030 ценой всего по 0,38$.
Предполагаемая мощность в нагрузке должна составить 8-10 Ватт в канале:
10 * 2 = 20W
КПД микросхемы TDA2030 по даташиту (datasheet) – 65%.
20 / 0,65 = 31W
Я подобрал трансформатор с витым броневым магнитопроводом, так что, КПД можно принять равным – 90%. http://oldoctober.com/
31 / 0,9 = 34W
Приблизительно оценить КПД трансформатора можно по таблице.
Мощность трансформатора (Вт) | КПД трансформатора (%) | |||
Броневой штампованный | Броневой витой | Стержневой витой | Кольцевой | |
5-10 | 60 | 65 | 65 | 70 |
10-50 | 80 | 90 | 90 | 90 |
50-150 | 85 | 93 | 93 | 95 |
150-300 | 90 | 95 | 95 | 96 |
300-1000 | 95 | 96 | 96 | 96 |
Значит, понадобится сетевой трансформатор мощностью около 30-40 Ватт. Такой трансформатор должен весить около килограмма или чуть больше, что, на мой взгляд, прибавит моему мини усилителю устойчивости и он не будет «бегать» за шнурами.
Если мощность трансформатора больше требуемой, то это всегда хорошо. У более мощных трансформаторов выше КПД. Например, трансформатор мощностью 3-5 Ватт может иметь КПД всего 50%, в то время как у трансформаторов мощностью 50–100 Ватт КПД обычно около 90%.
Итак, с мощностью трансформатора вроде всё более или менее ясно.
Теперь нужно определиться с выходным напряжением трансформатора.
Какую схему питания УНЧ выбрать?
Для питания микросхемы, я решил использовать двухполярное питание.
При двухполярном питании не требуется бороться с фоном и щелчками при включении. Кроме того, отпадает необходимость в разделительных конденсаторах на выходе усилителя.
Ну, и самое главное, микросхемы, рассчитанные на однополярное питание и имеющие соизмеримый уровень искажений, в несколько раз дороже.
Это схема блока питания. В нём применён двухполярный двухполупериодный выпрямитель, которому требуются трансформатор с двумя совершенно одинаковыми обмотками «III» и «IV» соединёнными последовательно. Далее все основные расчёты будут вестись только для одной из этих обмоток.
Обмотка «II» предназначена для питания электронных регуляторов громкости, тембра и стереобазы, собранных на микросхеме TDA1524. Думаю описать темброблок в одной из будущих статей.
Ток, протекающий через обмотку «II» будет крайне мал, так как микросхема TDA1524 при напряжении питания 8,5 Вольта потребляет ток всего 35мА. Так что потребление здесь ожидается менее одного Ватта и на общей картине сильно не отразится.
Расчёт выходного напряжения (переменного тока) трансформатора работающего на холостом ходу или без существенной нагрузки.
Этот расчёт необходимо сделать, чтобы обезопасить микросхему от пробоя.
Максимальное допустимое напряжение питания TDA2030 – ±18 Вольт постоянного тока.
Для переменного тока, это будет:
18 / 1,41 = 12,8 V
Падение напряжения на диоде* выпрямителя при незначительной нагрузке – 0,6 V.
12,8 + 0,6 = 13,4 V
* Схема применённого выпрямителя построена так, что протекающий в любом направлении ток создаёт падение напряжения только на одном из диодов. При использовании одной вторичной обмотки и мостового выпрямителя, таких диодов будет два.
При повышении напряжения сети, напряжение на выходе выпрямителя увеличится. По нормативам, напряжение сети должно быть в пределах – -10… +5% от 220-ти Вольт.
Уменьшаем напряжение на вторичной обмотке трансформатора для компенсации повышения напряжения сети на 5%.
13,4 / 1,05 = 12,8 V
Мы получили значение максимального допустимого напряжения переменного тока на вторичной обмотке трансформатора при питании микросхемы TDA2030 от двухполярного источника без стабилизации напряжения.
Проще говоря, это чтобы напряжение не вылезло за пределы ±18V и не спалило микруху.
Те же значения для этой линейки микросхем.
Расчёт напряжения (постоянного тока) на выходе блока питания работающего при максимальной нагрузке.
Этот расчёт необходимо сделать, чтобы оценить максимальную мощность на нагрузке и ограничить её путём снижения напряжения, если она выйдет за допустимые пределы для данного типа микросхемы или нагрузки.
Под нагрузкой напряжение переменного тока на вторичной обмотке понижающего трансформатора может уменьшиться. Поэтому, на практике, его искусственно завышают на 10%.
12,8 / 1,1 = 11,64V
Падение напряжения на диоде* выпрямителя резко возрастёт под нагрузкой и может достигнуть, в зависимости от типа диода, – 1,2… 1,8V. Так как я использую всякий хлам (КД226), то выбираю 1,8V.
11,64 – 1,8 = 9,8V
* Схема применённого выпрямителя построена так, что протекающий в любом направлении ток создаёт падение напряжения только на одном из диодов. При использовании одной вторичной обмотки и мостового выпрямителя, таких диодов будет два.
Мощный тор трансформатор
Чтобы изготовить Мощный тор трансформатор для усилителя в домашних условиях, но на профессиональном уровне, нужно немало терпения и определенных навыков. Я занимаюсь изготовлением мощных концевых усилителей для профессиональных музыкантов.
Собираю всю конструкцию с «нуля», в том числе выполняю намотку торов для блока питания. В этой статье хочу немного рассказать как я изготавливаю мощный тор трансформатор в условиях домашней мастерской, то есть в прямом смысле на «коленках». Тем не менее мои трансформаторы ничем не уступают заводским не по качеству исполнения и работоспособности не по внешнему виду. Прежде чем приступить к изготовлению транса нужно иметь под рукой все необходимые материалы для его намотки. Не буду подробно останавливаться на расчетах, но некоторые пособия для этого я покажу ниже.
Скачать → Упрощенный расчет тороидального трансформатора
В общем я надеюсь, что у вас уже имеется подходящий сердечник, габаритная мощность которого соответствует требованиям вашего будущего устройства, тем более если вы хотите собрать свой качественный фирменный усилитель мощности, ну а в случаи его отсутствия, то на «железном» рынки можно подобрать такой «бублик», например от ЛАТРа.
Кстати сказать, на заводах где производят торы, относятся к их изготовлению не совсем так как положено, поэтому такие магнитопроводы требуют небольшой доработки, к тому же мы рассчитываем его применение в ответственном устройстве как усилитель мощности НЧ. Чтобы исправить заводскую халтуру и сделать надежный, мощный тор трансформатор, для начала тороидальное железо, то есть его острые кромки по внутреннем и внешнему периметру необходимо притупить напильником, чтобы эти острые края не повредили обмоточный провод.
Таблица габаритных размеров сердечников
Если сам сердечник не плотно намотан, то тогда для повышения его магнитных свойств, зазоры между витками залить жидким материалом, обладающим магнитными свойствами, который в последствии застынет. Например приготовить раствор карбонильного железа разведенного в ацетоне, а предпочтительнее в дихлоретане. Если таких препаратов нет под рукой, то можно обработать витки железа эпоксидной смолой, а затем высушить. Следующий процесс — изолирование самого железа. Я обычно применяю плотную бумажную ленту на клеевой основе, она толще скотча, поэтому надежнее. Но можно воспользоваться и строительным скотчем в несколько слоев.
Когда сердечник подготовлен, начинаем непосредственно наматывать эмаль-проводом первичную обмотку трансформатора. Для этого необходимо намотать на челнок провод нужного сечения и требуемой длинны. К концу обмоточного провода припаять отрезок гибкого монтажного провода, а стык изолировать в термоусадочный кембрик. Если вы намерены собирать двуполярный мостовой источник питания для каждого канала стереоусилителя, то нужно учесть необходимость вывода средней точки с обмотки трансформатора. Поэтому не ошибитесь при намотке, то есть не забыть в камом месте нужно делать отвод.
Таблица диаметра провода и ток нагрузки
Для меня удобнее производить намотку, как я уже сказал именно на «коленке». То есть располагаюсь на диване в левой руке сердечник — в правой челнок и начинаю мотать стараясь большим пальцем левой руки плотно прижимать провод при этом челнок у меня всегда находится рядом на диване, а не падает на пол если бы я сидел на стуле. Именно так очень удобно, можно конечно сделать небольшое устройство на столе, где бы закреплялся сердечник, но лично для меня мой вариант удобнее всего. Обмоточный провод старайтесь укладывать ровно, а не вкось. По внутреннему диаметру тора он должен ложится виток к витку, а не в навал, а по внешнему периметру должен быть зазор между проводом где-то примерно в три его диаметра, тогда намотка будет ровной и красивой.
Основные характеристики электрической энергии и их взаимосвязь
Вот здесь программа: Скачать программу → Расчет тороидального трансформатора — воспользовавшись ей можно определить все данные для изготовления тора, а именно: сечение и количество витков провода первичной и вторичной обмоток, габаритная мощность трансформатора, в том числе какое количество витков нужно за один проход, это чтобы не получилось «в навал». После каждого прохода, обмотки необходимо изолировать друг от друга, чтобы не было замыкания между обмотками. Изолировать лучше всего фторопластовой лентой, имеется в магазинах электроники или других хозяйственных магазинах.
Мощный тор трансформатор можно изготовить и с применением другого способа изоляции обмоток, на мой взгляд очень бюджетный и эффективный метод. В супермаркетах продаются специальные термостойкие рулоны с пакетами для запекания мяса в духовке. Отличная вещь! И стоит не дорого и на долго хватит. А пользоваться этой пленкой очень просто: нужно порезать это рулон на ленты шириной примерно 20-25мм и изолировать обмотку двумя-тремя слоями, будет надежно и эффективно. При укладке провода всегда считайте витки, количество которых необходимо вы уже знаете. Когда закончите с выполнением первичной обмотки, нужно проверить ток холостого хода трансформатора.
Измерение тока нужно производить с особой осторожностью и желательно через ЛАТР. Это нужно знать при построении силовой части усилителя мощности и если будет слишком большой пусковой ток при включении усилителя, то появятся сопутствующие проблемы. Идеальный ток холостого хода, который должен иметь мощный тороидальный трансформатор рассчитанный на мощность 1000 Вт, должен быть 40-45 мА, это если при изготовлении сердечника он был хорошо отожжен.
Вторичная обмотка выполняется аналогичным способом, что и первичная. Зная количество витков в первичной обмотки и значение витков на вольт, вы примерно можете определить на каком витке вторички нужно делать отвод среднего провода, а для точного определения лучше замерять напряжение намотанных витков мультиметром. Для этого опять же через ЛАТР устанавливает точное сетевое напряжение 220 вольт и измеряем вольтаж намотанной половинки вторичной обмотки не отсоединяя челнок, а так и измеряем — один щуп прибора на гибкий вывод вторички, другой прямо на конец провода расположенного на челноке предварительно его зачистив.
Если напряжение на средней точке (которое должно быть ровно половине общего напряжения во вторичной обмотке) соответствует заданному значению, значит также делаем гибкий отвод монтажным проводом и продолжаем выполнять обмотку до конца, с таким же количеством витков, как и первой половине. Не забывать после каждого прохода нужно изолировать слой. Затем выполняется еще одна аналогичная вторичная обмотка для второго канала усилителя. Если требуется дополнительная обмотка, например для обеспечения питания вентилятора охлаждения, то ее тоже нужно изготовить, но уже проводом меньшего сечения в зависимости от тока потребления вентилятора.
Не в коем случае не берите напряжение для этой цели с рабочих обмоток предназначенных для питания самого усилителя, должна быть только отдельная обмотка и свой выпрямитель. После того как вы полностью намотали трансформатор, последний слой провода нужно изолировать более надежно, во избежании механических повреждений при монтаже и эксплуатации в дальнейшем.
Расчёт и изготовление трансформатора для импульсного блока питания
на тороидальном (кольцевом) ферритовом сердечнике. Онлайн калькулятор обмоток.
«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».
А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один — массогабаритные показатели. Всё остальное — сплошной минус.
Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.
Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.
Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное — при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.
По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.
И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.
Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.
А когда эти различия выражаются многими разами, то возникает желание «что-то подправить в консерватории». Объясняется это желание просто — существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.
А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.
Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней — просто нечему.
Ну и наконец, переходим к расчёту импульсного трансформатора.
Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных — EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.
Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.
Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .
Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.
Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.