Hydratool.ru

Журнал "ГидраТул"
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Глава 50. Расчёт электрического сопротивления

Глава 50. Расчёт электрического сопротивления

Чаще всего резисторы представляют собой металлическую проволоку или полоску, для компактности намотанную на стержень (чем длинней проводник и чем меньше его поперечное сечение, тем выше сопротивление). Разумеется, сопротивление также зависит от материала, из которого изготовлен проводник. Полюбоваться на резисторы можно на рисунке 50.1. «Резисторы (с сайта РадиоКот)».

Резисторы (с сайта РадиоКот)

На электрических схемах резистор обычно изображают как прямоугольник, из которого выходят два вывода (рисунок 50.2. «Схематическое изображение резистора»).

Последовательное и параллельное соединение резисторов

Очевидно, имеется только две возможности для соединения двух резисторов: можно их спаять одним концом или же обоими. Первый способ называется последовательным соединением, а второй — параллельным (рисунок 50.3. «Последовательное и параллельное соединение резисторов»).

И последовательное, и параллельное соединение резисторов можно рассматривать как новый резистор. Его сопротивление можно вычислить, пользуясь следующими правилами:

  • При последовательном соединении резисторов их сопротивления складываются: R = R 1 + R 2 .
  • При параллельном соединении резисторов складываются их проводимости, то есть величины, обратные сопротивлениям: 1 R = 1 R 1 + 1 R 2 , или R = R 1 ⁢ R 2 R 1 + R 2 .

В частности, соединяя два одинаковых резистора с единичным сопротивлением последовательно, получим сопротивление 2 , при параллельном соединении получим 1 2 .

При соединении более двух резисторов иногда удаётся представить полученную схему как последовательное или параллельное соединение двух подсхем. Например, схема на рисунке 50.4. «Смешанное соединение резисторов» представляется как параллельное соединение резистора R 1 и последовательного соединения резисторов R 2 и R 3 . Таким образом, сопротивление схемы между двумя выделенными узлами вычисляется как R 1 ⁢ R 2 + R 3 R 1 + R 2 + R 3 .

Сложное соединение резисторов

Увы, не всякая схема представляется как последовательное или параллельное соединение двух подсхем, подобно тому, как не всякое натуральное число раскладывается в произведение своих собственных делителей. Простой пример такой неразложимой схемы можно увидеть на рисунке 50.5. «Сложное соединение резисторов».

Для расчёта таких сопротивлений используют, помимо закона Ома, ещё и закон сохранения заряда.

Электрический ток в проводнике можно представлять себе как поток частиц, несущих электрические заряды (это могут быть электроны или ионы). Причиной такого движения заряженных частиц является разность электрических потенциалов на концах проводника (напряжение). Сама по себе величина потенциала в отдельно взятой точке схемы не имеет физического смысла, такой смысл есть только лишь у разности потенциалов в двух точках (точно так же лишена смысла потенциальная энергия силы тяжести в отдельной точке, а важен перепад потенциальной энергии в двух точках). Ток — это суммарный заряд, протекающий через поперечное сечение проводника за единицу времени. Представим такую модель: по дороге из пункта A в пункт B движется поток автомобилей, каждый из которых загружен зарядом. Если заряды положительны, считается, что ток в направлении от A к B положителен. Но можно считать также, что имеется отрицательный ток (той же самой абсолютной величины) в направлении от B к A .

Закон сохранения зарядов говорит, что электрические заряды не возникают ниоткуда и не исчезают в никуда. Если электрически нейтральная частица, такая как атом, распадается на две заряженных частицы (ион и электрон), суммарный заряд новых частиц всегда равняется заряду атома, то есть нулю. Из закона следует, в частности, что токи через два поперечных сечения тонкого проводника в один и тот же момент времени равны, иначе где-то между этими сечениями рождался бы или пропадал ненулевой заряд. Другим следствием закона сохранения заряда является утверждение, что в узле электрической схемы, где соединяется несколько проводников, сумма всех входящих в узел токов равна сумме всех выходящих. Если вернуться к автомобильной аналогии, количество автомобилей, въезжающих на перекрёсток нескольких дорог, равно количеству выезжающих с перекрёстка (здесь, конечно, предполагается, что каждый автомобиль везёт единичный заряд, и время, проводимое автомобилями на перекрёстке, пренебрежимо мало).

Теперь, вооружённые знаниями, рассчитаем сопротивление электрической схемы на рисунке 50.5 между отмеченными узлами. На схеме присутствуют пять резисторов и четыре узла. Пронумеруем резисторы числами от 1 до 5 и узлы числами от 1 до 4 . Порядок нумерации узлов можно выбрать совершенно произвольно. Чтобы судить о направлении тока через каждый из резисторов, следует на каждом задать направление. Это также можно сделать произвольно, однако для определённости будем считать, что положительным направлением тока будет направление от узла с меньшим номером к узлу с большим. Обозначим потенциалы в узлах буквой U с соответствующим индексом. Результат всех этих приготовлений представлен на рисунке 50.6. «Разметка схемы».

Читайте так же:
Как наматывают тороидальные трансформаторы видео

Пропустим электрический ток через узлы с номерами 1 и 2 . Из закона сохранения заряда ток, входящий в узел 1 , равен току, выходящему из узла 2 . Если взять величину тока, равную единице, в силу закона Ома разность потенциалов U 2 − U 1 будет равна в точности искомому сопротивлению. Поскольку, как мы помним, имеют значения лишь разности потенциалов, мы можем смело положить U 1 = 0 , и тогда U 2 окажется искомым сопротивлением схемы.

Обозначив как I α ток через резистор R α , для каждого из резисторов запишем закон Ома: R 1 ⁢ I 1 = U 3 − U 1 , R 2 ⁢ I 2 = U 4 − U 1 , R 3 ⁢ I 3 = U 4 − U 3 , R 4 ⁢ I 4 = U 3 − U 2 , R 5 ⁢ I 5 = U 4 − U 2 .

Вторая группа уравнений получается из закона сохранения заряда. Для каждого узла сумму входящих в него токов приравниваем сумме выходящих. При этом не забываем про единичный ток, входящий в первый узел и выходящий из второго: 1 = I 1 + I 2 , 0 = 1 + I 4 + I 5 , I 1 + I 4 = I 3 , I 2 + I 3 + I 5 = 0 .

Добавив к составленным уравнениям ещё одно, U 1 = 0 , решаем полученную систему относительно U 2 .

Между прочим, применяя описанную методику к последовательному и параллельному соединениям резисторов, мы с удовольствием убедились в правильности формул сложения сопротивлений и проводимостей.

Пора заметить, что все полученные уравнения являются линейными алгебраическими по отношению ко всем неизвестным величинам I α и U β . Мы не станем задаваться вопросом о единственности решения такой системы уравнений. Отметим лишь, что существует единственное значение U 2 , удовлетворяющее системе. Об этом говорит физический смысл уравнений.

Задача расчёта электрического сопротивления является довольно актуальной. Имеется ряд приёмов, которые позволяют упростить её решение. К примеру, правила Кирхгофа позволяют строить системы уравнений, равносильные только что полученным, и при этом, как правило, более простые. Есть методы, в основе которых лежат преобразования схем в эквивалентные (то есть имеющие то же сопротивление), но при этом разложимые в последовательное или параллельное соединение двух подсхем. Мы не будем останавливаться на этих методах. В главе 49. «Линейные уравнения» рассматривалось алгоритмическое решение систем линейных уравнений, и нам остаётся лишь воспользоваться уже написанным библиотечным модулем.

Как найти параллельное сопротивление формула

Про разные виды соединений проводников сказано в предыдущем билете (№ 29)

На рисунке 38 показано параллельное соединение двух проводников 1 и 2 с сопротивлениями  R_1 и  R_2 . В этом случае электрический ток  I разветвляется на две части. Силу тока в первом и втором проводниках обозначим через  I_1 и  I_2 . Так как в точке разветвления проводников (в точке А) электрический заряд не накапливается, то заряд, поступающий в единицу времени в эту точку, равен заряду, уходящему из нее за это же время. Следовательно,

 I = I_1 + I_2 .

Напряжение  U на проводниках, соединенных параллельно, одно и то же.

В осветительной сети поддерживается напряжение 220 или 127 В. На это напряжение рассчитаны приборы, потребляющие электрическую энергию. Поэтому параллельное соединение — самый распространенный способ соединения различных потребителей. Н этом случае выход из строя одного прибора не отражается на работе остальных, тогда как при последовательном соединении выход из строя одного прибора размыкает всю цепь.

Применяя закон Ома для участка цепи с сопротивлениями  R_1 и  R_2 , можно доказать, что величина, обратная полному сопротивлению участка АВ, равна сумме величин, обратных сопротивлениям отдельных проводников.

Действительно, заменим в формуле тока для параллельного соединения проводников значение силы тока, пользуясь законом Ома:  frac<U data-lazy-src=

Если сопротивление вольтметра  R_V , то после включения его в цепь сопротивление участка будет уже не  R , а  R' = frac<RR_V data-lazy-src=

Из-за этого измеряемое напряжение на участке цепи уменьшится. Для того чтобы вольтметр не вносил заметных искажений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением участка цепи, на котором измеряется напряжение. Вольтметр можно включить в сеть без риска, что он сгорит, если только он рассчитан на напряжение, превышающее напряжение сети.

Параллельное соединение

Измерение сопротивления резистора.

Сопротивление трёх одинаковых резисторов, соединённых параллельно, в три раза меньше, чем сопротивление одного резистора.

Параллельное соединение двух одинаковых резисторов.

Измерение сопротивления двух параллельно соединённых резисторов

Сопротивление двух одинаковых резисторов, соединённых параллельно, в два раза меньше, чем сопротивление одного резистора.

Схема параллельного соединения сопротивлений.

Схема параллельного соединения сопротивлений

Схема параллельного соединения двух сопротивлений.

Схема параллельного соединения двух сопротивлений

Параллельное соединение пяти одинаковых сопротивлений.

Параллельное соединение пяти одинаковых сопротивлений

При параллельном соединении одинаковых резисторов их общее сопротивление уменьшается, но мощность суммируется.

При параллельном соединении одинаковых резисторов их общее сопротивление уменьшается, но мощность суммируется

Использование номограммы, предназначенной для двух параллельно соединённых сопротивлений.

Использование номограммы, предназначенной для двух параллельно соединённых сопротивлений

Параллельным соединением сопротивлений называется такое соединение, когда начала сопротивлений соединены в одну общую точку, а концы — в другую.

Для параллельного соединения сопротивлений характерны следующие свойства:

— напряжения на зажимах всех сопротивлений одинаковы:
U1 = U2 = U3 = U;
— проводимость всех параллельно соединённых сопротивлений равна сумме проводимостей отдельных сопротивлений:
1/R = 1/R1 + 1/R2 + 1/R3 = R1R2 + R1R3 + R2R3/R1R2R3,
где R — эквивалентное (равнодействующее) сопротивление трёх сопротивлений (в данном случае R1, R2 и R3).

Чтобы получить сопротивление такой цепи, надо перевернуть дробь, определяющую величину её проводимости. Следовательно, сопротивление параллельного разветвления из трёх резисторов:
R = R1R2R3/R1R2 + R2R3 + R1R3.

Эквивалентным сопротивлением называется такое сопротивление, которым можно заменить несколько сопротивлений (включенных параллельно или последовательно), не изменяя величины тока в цепи.

Чтобы найти эквивалентное сопротивление при параллельном соединении, необходимо сложить проводимости всех отдельных участков, т.е. найти общую проводимость. Величина, обратная общей проводимости, и является общим сопротивлением.

При параллельном соединении эквивалентная проводимость равна сумме проводимостей отдельных ветвей, следовательно, эквивалентное сопротивление в этом случае всегда меньше наименьшего из параллельно включенных сопротивлений.

На практике могут быть случаи, когда цепь состоит из более, чем трёх параллельных ветвей. Все полученные соотношения остаются справедливыми и для цепей, состоящих из любого числа параллельно соединённых резисторов.

Найдём эквивалентное сопротивление двух параллельно включенных сопротивлений R1 и R2 (см. рис.). Проводимость первой ветви равна 1/R1, проводимость второй ветви — 1/R2. Общая проводимость:
1/R = 1/R1 + 1/R2.

Эта формула и служит для расчётов общего сопротивления цепи, состоящей из двух параллельно включенных сопротивлений.

Таким образом, эквивалентное сопротивление двух параллельно включенных сопротивлений равно произведению этих сопротивлений, делённому на их сумму.

При параллельном соединении n равных сопротивлений R1 эквивалентное сопротивление их будет в n раз меньше, т.е.
R = R1/n.

На схеме, изображённой на последнем рисунке, включено пять сопротивлений R1 по 30 Ом каждое. Следовательно, общее сопротивление R будет
R = R1/5 = 30/5 = 6 Ом.

Можно сказать, что сумма токов, подходящих к узловой точке А (на первом рисунке), равна сумме токов, от неё отходящих:
I = I1 + I2 + I3.

Рассмотрим, как происходит разветвление тока в цепях с сопротивлениями R1 и R2 (второй рисунок). Так как напряжение на зажимах этих сопротивлений одинаково, то
U = I1R1 и U = I2R2.

Левые части этих равенств одинаковы, следовательно, равны и правые части:
I1R1 = I2R2,
или
I1/I2 = R2/R1,
т.е. ток при параллельном соединении сопротивлений разветвляется обратно пропорционально сопротивлениям ветвей (или прямо пропорционально их проводимостям). Чем больше сопротивление ветви, тем меньше ток в ней, и наоборот.

Таким образом, из нескольких одинаковых резисторов можно получить общий резистор с бОльшей мощностью рассеивания.

При параллельном соединении неодинаковых резисторов в наиболее высокоомном резисторе выделяется наибольшая мощность.

Пример 1. Имеются два сопротивления, включенных параллельно. Сопротивление R1 = 25 Ом, а R2 = 50 Ом. Определить общее сопротивление цепи Rобщ.

Решение. Rобщ = R1R2/R1 + R2 = 25 x 50 / 25 + 50 ≈ 16, 6 Ом.

Пример 2. В ламповом усилителе имеются три лампы, нити накала которых включены параллельно. Ток накала первой лампы I1 = 1 ампер, второй I2 = 1, 5 ампера и третьей I3 = 2, 5 ампера. Определить общий ток цепи накала ламп усилителя Iобщ.

Решение. Iобщ = I1 + I2 + I3 = 1 + 1, 5 + 2, 5 = 5 ампер.

Параллельное соединение резисторов часто встречается в радиотехнической аппаратуре. Два или более резисторов включается параллельно в тех случаях, когда ток в цепи слишком большой и может вызвать чрезмерный нагрев резистора.

Читайте так же:
Как согнуть квадратный профиль

Примером параллельного соединения потребителей электрической энергии может служить включение электрических ламп обычной осветительной сети, которые соединяются параллельно. Достоинство параллельного соединения потребителей заключается в том, что выключение одного из них не влияет на работу других.

Последовательное и параллельное соединение сопротивлений

Возьмем три постоянных сопротивления R1, R2 и R3 и включим их в цепь так, чтобы конец первого сопротивления R1 был соединен с началом второго сопротивления R 2, конец второго — с началом третьего R 3, а к началу первого сопротивления и к концу третьего подведем проводники от источника тока (рис. 1 ).

Такое соединение сопротивлений называется последовательным. Очевидно, что ток в такой цепи будет во всех ее точках один и тот же.

Последовательное соединение сопротивлений

Рис 1 . Последовательное соединение сопротивлений

Как определить общее сопротивление цепи, если все включенные в нее последовательно сопротивления мы уже знаем? Используя положение, что напряжение U на зажимах источника тока равно сумме падений напряжений на участках цепи, мы можем написать:

U1 = IR1 U2 = IR2 и U3 = IR3

IR = IR1 + IR2 + IR3

Вынеся в правой части равенства I за скобки, получим IR = I(R1 + R2 + R3) .

Поделив теперь обе части равенства на I , будем окончательно иметь R = R1 + R2 + R3

Таким образом, мы пришли к выводу, что при последовательном соединении сопротивлений общее сопротивление всей цепи равно сумме сопротивлений отдельных участков.

Проверим этот вывод на следующем примере. Возьмем три постоянных сопротивления, величины которых известны (например, R1 == 10 Ом, R 2 = 20 Ом и R 3 = 50 Ом). Соединим их последовательно (рис. 2 ) и подключим к источнику тока, ЭДС которого равна 60 В (внутренним сопротивлением источника тока пренебрегаем).

Пример последовательного соединения трех сопротивлений

Рис. 2. Пример последовательного соединения трех сопротивлений

Подсчитаем, какие показания должны дать приборы, включенные, как показано на схеме, если замкнуть цепь. Определим внешнее сопротивление цепи: R = 10 + 20 + 50 = 80 Ом.

Найдем ток в цепи по закону Ома: 60 / 80 = 0 ,75 А

Зная ток в цепи и сопротивления ее участков, определим падение напряжения на каждое участке цепи U 1 = 0,75 х 10 = 7,5 В, U 2 = 0,75 х 20=15 В, U3 = 0,75 х 50 = 37,5 В.

Зная падение напряжений на участках, определим общее падение напряжения во внешней цепи, т. е. напряжение на зажимах источника тока U = 7,5+15 + 37,5 = 60 В.

Мы получили таким образом, что U = 60 В, т. е. несуществующее равенство ЭДС источника тока и его напряжения. Объясняется это тем, что мы пренебрегли внутренним сопротивлением источника тока.

Замкнув теперь ключ выключатель К, можно убедиться по приборам, что наши подсчеты примерно верны.

Последовательное и параллельное соединение сопротивлений

Параллельное соединение сопротивлений

Возьмем два постоянных сопротивления R1 и R2 и соединим их так, чтобы начала этих сопротивлений были включены в одну общую точку а, а концы — в другую общую точку б. Соединив затем точки а и б с источником тока, получим замкнутую электрическую цепь. Такое соединение сопротивлений называется параллельным соединением.

Параллельное соединение сопротивлений

Рис 3. Параллельное соединение сопротивлений

Проследим течение тока в этой цепи. От положительного полюса источника тока по соединительному проводнику ток дойдет до точки а. В точке а он разветвится, так как здесь сама цепь разветвляется на две отдельные ветви: первую ветвь с сопротивлением R1 и вторую — с сопротивлением R2. Обозначим токи в этих ветвях соответственно через I1 и I 2. Каждый из этих токов пойдет по своей ветви до точки б. В этой точке произойдет слияние токов в один общий ток, который и придет к отрицательному полюсу источника тока.

Таким образом, при параллельном соединении сопротивлений получается разветвленная цепь. Посмотрим, какое же будет соотношение между токами в составленной нами цепи.

Включим амперметр между положительным полюсом источника тока (+) и точкой а и заметим его показания. Включив затем амперметр (показанный «а рисунке пунктиром) в провод, соединяющий точку б с отрицательным полюсом источника тока (—), заметим, что прибор покажет ту же величину силы тока.

Значит, сила тока в цепи до ее разветвления (до точки а) равна силе тока после разветвления цепи (после точки б).

Читайте так же:
Для чего нужны винтовые компрессоры

Будем теперь включать амперметр поочередно в каждую ветвь цепи, запоминая показания прибора. Пусть в первой ветви амперметр покажет силу тока I1 , а во второй — I 2. Сложив эти два показания амперметра, мы получим суммарный ток, по величине равный току I до разветвления (до точки а).

Следовательно, сила тока, протекающего до точки разветвления, равна сумме сил токов, утекающих от этой точки. I = I1 + I2 Выражая это формулой, получим

Это соотношение, имеющее большое практическое значение, носит название закона разветвленной цепи .

Рассмотрим теперь, каково будет соотношение между токами в ветвях.

Включим между точками а и б вольтметр и посмотрим, что он нам покажет. Во-первых, вольтметр покажет напряжение источника тока, так как он подключен, как это видно из рис. 3 , непосредственно к зажимам источника тока. Во-вторых, вольтметр покажет падения напряжений U1 и U2 на сопротивлениях R 1 и R2, так как он соединен с началом и концом каждого сопротивления.

Следовательно, при параллельном соединении сопротивлений напряжение на зажимах источника тока равно падению напряжения на каждом сопротивлении.

Это дает нам право написать, что U = U1 = U2 ,

где U — напряжение на зажимах источника тока; U 1 — падение напряжения на сопротивлении R 1 , U2 — падение напряжения на сопротивлении R2. Вспомним, что падение напряжения на участке цепи численно равно произведению силы тока, протекающего через этот участок, на сопротивление участка U = IR .

Поэтому для каждой ветви можно написать: U1 = I1R1 и U2 = I2R2 , но так как U 1 = U2, то и I1R1 = I2R2 .

Применяя к этому выражению правило пропорции, получим I1/ I2 = U2 / U1 т. е. ток в первой ветви будет во столько раз больше (или меньше) тока во второй ветви, во сколько раз сопротивление первой ветви меньше (или больше) сопротивления второй ветви.

Итак, мы пришли к важному выводу, заключающемуся в том, что при параллельном соединении сопротивлений общий ток цепи разветвляется на токи, обратно пропорциональные величинам сопротивлении параллельных ветвей. Иначе говоря, чем больше сопротивление ветви, тем меньший ток потечет через нее, и, наоборот, чем меньше сопротивление ветви, тем больший ток потечет через эту ветвь.

Убедимся в правильности этой зависимости на следующем примере. Соберем схему, состоящую из двух параллельно соединенных сопротивлений R1 и R 2, подключенных к источнику тока. Пусть R1 = 10 Ом, R2 = 20 Ом и U = 3 В.

Подсчитаем сначала, что покажет нам амперметр, включенный в каждую ветвь:

I1 = U / R1 = 3 / 10 = 0 ,3 А = 300 мА

I 2 = U / R 2 = 3 / 20 = 0,15 А = 150 мА

Общий ток в цепи I = I1 + I2 = 300 + 150 = 450 мА

Проделанный нами расчет подтверждает, что при параллельном соединении сопротивлений ток в цепи разветвляется обратно пропорционально сопротивлениям.

Действительно, R1 == 10 Ом вдвое меньше R 2 = 20 Ом, при этом I1 = 300 мА вдвое больше I2 = 150 мА. Общий ток в цепи I = 450 мА разветвился на две части так, что большая его часть ( I1 = 300 мА) пошла через меньшее сопротивление ( R1 = 10 Ом), а меньшая часть ( R2 = 150 мА) — через большее сопротивление ( R 2 = 20 Ом).

Такое разветвление тока в параллельных ветвях сходно с течением жидкости по трубам. Представьте себе трубу А, которая в каком-то месте разветвляется на две трубы Б и В различного диаметра (рис. 4). Так как диаметр трубы Б больше диаметра трубок В, то через трубу Б в одно и то же время пройдет больше воды, чем через трубу В, которая оказывает потоку воды большее сопротивление.

Рис. 4 . Через тонкую трубу в один и тот же промежуток времени пройдет воды меньше, чем через толстую

Рассмотрим теперь, чему будет равно общее сопротивление внешней цепи, состоящей из двух параллельно соединенных сопротивлений.

Под этим общим сопротивлением внешней цепи надо понимать такое сопротивление, которым можно было бы заменить при данном напряжении цепи оба параллельно включенных сопротивления, не изменяя при этом тока до разветвления. Такое сопротивление называется эквивалентным сопротивлением.

Вернемся к цепи, показанной на рис. 3, и посмотрим, чему будет равно эквивалентное сопротивление двух параллельно соединенных сопротивлений. Применяя к этой цепи закон Ома, мы можем написать: I = U/R , где I — ток во внешней цепи (до точки разветвления), U — напряжение внешней цепи, R — сопротивление внешней цепи, т. е. эквивалентное сопротивление.

Читайте так же:
Как подобрать автомат по мощности таблица

Точно так же для каждой ветви I1 = U1 / R1 , I2 = U2 / R2 , где I1 и I 2 — токи в ветвях; U 1 и U2 — напряжение на ветвях; R1 и R2 — сопротивления ветвей.

По закону разветвленной цепи: I = I1 + I2

Подставляя значения токов, получим U / R = U1 / R1 + U2 / R2

Так как при параллельном соединении U = U1 = U2 , то можем написать U / R = U / R1 + U / R2

Вынеся U в правой части равенства за скобки, получим U / R = U (1 / R1 + 1 / R2 )

Разделив теперь обе части равенства на U , будем окончательно иметь 1 / R = 1 / R1 + 1 / R2

Помня, что проводимостью называется величина, обратная сопротивлению , мы можем сказать, что в полученной формуле 1 / R — проводимость внешней цепи; 1 / R1 проводимость первой ветви; 1 / R2- проводимость второй ветви.

На основании этой формулы делаем вывод: при параллельном соединении проводимость внешней цепи равна сумме проводимостей отдельных ветвей.

Следовательно, чтобы определить эквивалентное сопротивление включенных параллельно сопротивлений, надо определить проводимость цепи и взять величину, ей обратную.

Из формулы также следует, что проводимость цепи больше проводимости каждой ветви, а это значит, что эквивалентное сопротивление внешней цепи меньше наименьшего из включенных параллельно сопротивлений.

Последовательное и параллельное соединение сопротивлений

Рассматривая случай параллельного соединения сопротивлений, мы взяли наиболее простую цепь, состоящую из двух ветвей. Однако на практике могут встретиться случаи, когда цепь состоит из трех и более параллельных ветвей. Как же поступать в этих случаях?

Оказывается, все полученные нами соотношения остаются справедливыми и для цепи, состоящей из любого числа параллельно соединенных сопротивлений.

Чтобы убедиться в этом, рассмотрим следующий пример.

Возьмем три сопротивления R1 = 10 Ом, R2 = 20 Ом и R3 = 60 Ом и соединим их параллельно. Определим эквивалентное сопротивление цепи (рис. 5 ).

Цепь с тремя параллельно соединенными сопротивлениями

Рис. 5. Цепь с тремя параллельно соединенными сопротивлениями

Применяя для этой цепи формулу 1 / R = 1 / R1 + 1 / R2 , можем написать 1 / R = 1 / R1 + 1 / R2 + 1 / R3 и, подставляя известные величины, получим 1 / R = 1 / 10 + 1 / 20 + 1 / 60

Сложим эта дроби: 1/R = 10 / 60 = 1 / 6, т. е.. проводимость цепи 1 / R = 1 / 6 Следовательно, эквивалентное сопротивление R = 6 Ом.

Таким образом, эквивалентное сопротивление меньше наименьшего из включенных параллельно в цепь сопротивлений , т. е. меньше сопротивления R1.

Посмотрим теперь, действительно ли это сопротивление является эквивалентным, т. е. таким, которое могло бы заменить включенные параллельно сопротивления в 10, 20 и 60 Ом, не изменяя при этом силы тока до разветвления цепи.

Допустим, что напряжение внешней цепи, а следовательно, и напряжение на сопротивлениях R1, R2, R3 равно 12 В. Тогда сила токов в ветвях будет: I1 = U/R1 = 12 / 10 = 1 ,2 А I 2 = U/R 2 = 12 / 20 = 1 ,6 А I 3 = U/R1 = 12 / 60 = 0, 2 А

Общий ток в цепи получим, пользуясь формулой I = I1 + I2 + I3 = 1,2 + 0,6 + 0,2 = 2 А.

Проверим по формуле закона Ома, получится ли в цепи ток силой 2 А, если вместо трех параллельно включенных известных нам сопротивлений включено одно эквивалентное им сопротивление 6 Ом.

I = U / R = 12 / 6 = 2 А

Как видим, найденное нами сопротивление R = 6 Ом действительно является для данной цепи эквивалентным.

В этом можно убедиться и на измерительных приборах, если собрать схему с взятыми нами сопротивлениями, измерить ток во внешней цепи (до разветвления), затем заменить параллельно включенные сопротивления одним сопротивлением 6 Ом и снова измерить ток. Показания амперметра и в том и в другом случае будут примерно одинаковыми.

На практике могут встретиться также параллельные соединения, для которых рассчитать эквивалентное сопротивление можно проще, т. е. не определяя предварительно проводимостей, сразу найти сопротивление.

Например, если соединены параллельно два сопротивления R1 и R2 , то формулу 1 / R = 1 / R1 + 1 / R2 можно преобразовать так: 1/R = (R2 + R1) / R1 R2 и, решая равенство относительно R, получить R = R1 х R2 / ( R1 + R2 ), т. е. при параллельном соединении двух сопротивлений эквивалентное сопротивление цепи равно произведению включенных параллельно сопротивлений, деленному на их сумму.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector