Hydratool.ru

Журнал "ГидраТул"
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Маркировка сталей в России

Маркировка сталей в России

Для обозначения марок стали разработана система, принятая в ГОСТах. Обозначения состоят из небольшого числа цифр и букв, указывающих на примерный состав стали. Каждый легирующий элемент обозначается буквой: Н — никель; Х — хром; К — кобальт; М — молибден; Г — марганец; Д — медь; Р — бор; Б — ниобий; Ц — цирконий; С — кремний; П — фосфор, Ч — редкоземельные металлы; В — вольфрам; Т — титан; А — азот (буква А в середине марочного обозначения указывает на наличие азота, специально введенного в сталь); Ф — ванадий; Ю — алюминий.

Первые цифры в обозначении показывают среднее содержание углерода в сотых долях процента (у высокоуглеродистых инструментальных сталей в десятых долях процента). Цифры, следующие после буквы, указывают на примерное содержание данного легирующего элемента (при содержании элемента менее 1 % цифра отсутствует; при содержании около 1 % — цифра 1 и около 2 % — цифра 2 и т.д.).

Следовательно, сталь состава 0,10-0,15 % С и 1,3-1,7 % Mn будет обозначаться 12Г2; сталь состава 0,28-0,35 % С; 0,8-0,11 % Cr; 0,9-1,2 % Mn; 0,8-1,2 % Si — 30ХГС и т.д.

Чтобы показать, что в стали ограничено содержание серы и фосфора (S<0,03 % и P<0,03 %), а также соблюдены все условия металлургического производства высококачественной стали, в конце обозначения марки ставят букву А. (Буква А в середине марочного обозначения указывает на наличие азота, специально введенного в сталь). Особо высококачественная сталь обозначается буквами Ш, ВД, ВИ, ПД и т.д. в конце наименования марки, где ВД обозначает, что сталь или сплав получен вакуумно-дуговым переплавом, Ш — электрошлаковым переплавом, ВИ — методом вакуумно-индукционной выплавки, ПД — плазменно-дуговым и т.д.

Наименование марок сплавов состоит только из буквенных обозначений элементов. Исключение составляет никель, после обозначения которого указываются цифры его среднего содержания в процентах.

Однако в ряде случаев для сокращения числа знаков в обозначении несколько отступают от точного соблюдения системы ГОСТов (особенно это относится к сложнолегированным сталям). Нестандартные стали обозначают самым различным образом. Так, опытные марки, выплавленные на заводе "Электросталь", обозначаются буквой И (исследовательские) и П (пробные) и порядковым номером, например, ЭИ179, ЭИ276, ЭП398 и т.д. Опытные марки, выплавленные на металлургическом заводе "Днепроспецсталь", обозначают ДИ 80, где Д — завод-изготовитель, И — исследовательская, 80 — порядковый номер, присвоенный марке стали.

В инструментальных сталях, имеющих углерода более 1 %, цифры, обозначающие его содержание, полностью опускают. Так, инструментальная сталь с 1,45-1,70 % С; 11-12,5 % Cr и 0,5-0,8 % Mo обозначается Х12М.

При маркировке электротехнических сталей (типа 1211, 1313, 2211 и т.д.) в обозначении марки цифры означают: первая — класс по структурному состоянию и виду прокатки; вторая — содержание кремния; третья — группу по основной нормируемой характеристике. Вместе первые три цифры в обозначении марки означают тип стали; четвертая — порядковый номер типа стали.

Для изготовления строительных стальных конструкций со сварными и другими соединениями применяются марки стали типа С235, С245, С255, С345, С590К и т.д. Буква С означает сталь строительная, цифры условно обозначают предел текучести проката, буква К — вариант химического состава. По требованию потребителя массовая доля меди в стали С345, С375, С390, С440 должна быть 0,15 — 0,30 %, при этом к обозначению стали добавляется буква Д, например, С345Д.

Для изготовления рельсов широкой колеи типов Р75, Р65 и Р50 применяются стали марок М76 и М74, где буква М указывает способ выплавки (мартеновский), цифры — среднее содержание углерода в сотых долях процента. Рельсы узкой колеи типа Р33 изготавливаются из спокойной углеродистой стали. В зависимости от содержания углерода они подразделяются на нормальные (категория Н), твердые (категория Т) и повышенной твердости (категория ПТ).

Прокат из стали повышенной прочности изготовляют классов прочности: 265, 295, 315, 325, 345, 355, 375, 390 и 440, где цифры обозначают предел текучести.

Читайте так же:
Количество кабелей в кабель канале

Для изготовления конструкций, работающих при низких температурах, применяется сталь марок ОН9, ОН9-Ш, ОН6Б, ОН3, ОН6 и т.д. Содержание углерода в них не более 0,1 %, цифра после буквы Н указывает содержание никеля в целых единицах (например, ОН9 содержит около 9 % никеля).

Углеродистые литейные стали маркируются числом, обозначающим среднее содержание углерода (в сотых долях процента), и буквой Л.

Несмотря на то, что для всех сталей невозможно применить в полном объёме систему маркировки ГОСТов, она все же наиболее удобна, наглядна и значительно превосходит в этом отношении принятую в других странах систему маркировки стали.

© 2019 ПРОМЭЛКОМПЛЕКТ телефон т. (8482) 46-58-36, т. 89272687129, т. 89277719382

Что такое сталь? Часть 1. «Cтруктура»

Все знаю, что сталь является важнейшим инструментальным и конструкционным материалом для всех отраслей промышленности.

Металлургическая промышленность Украины насчитывает более 50 металлургических заводов и является стратегически важной для страны. В Украине производится широкий ассортимент металлопроката, таких, как: арматура, круги, квадрат, катанка, проволока, полоса, уголок, балка, швеллер, листы, трубы и метизы.

Сталь

Рассматривая данный вопрос, начнем с химического состава.

Сталь – это соединение железо (Fe) + углерод (С) + другие элементы растворенные в железе.

Железо в чистом виде имеет очень низкую прочность, а углерод ее повышает.

Углерод улучшает и некоторые другие показатели:

  • твердость,
  • упругость,
  • устойчивость к износу,
  • выносливость.

Содержание «Fe» в стали должно быть — не менее 45%, «С»- не более 2,14% — теоретически, однако на практике % концентрации углерода имеет следующий диапазон значений:

  • Низкоуглеродистые стали — 0,1-0,13 %
  • Углеродистые стали 0,14-0,5%
  • Высокоуглеродистые – от 0,6%

Чем выше процент содержания углерода в стали , тем выше ее прочность и меньше пластичность. УГЛЕРОД — является неметаллическим элементом. Его плотность равна 2,22 г/см3, а плавится при t -3500 °С. В природе он присутствует 2х полиморфных модификаций – графит (стабильная модификация) и алмаз (метастабильная модификация), а в сплаве с железом:

  • в свободном — графит (в серых чугунах),
  • в связанном — твердое состояние -цементит.

Углерод в соединении с железом находится в состоянии цементита, т.е в химической связи с железом (Fe3C). Структура цементита может быть очень разной, а зависит она от процесса образования, содержания углерода и методов термообработок.

Углерод в свободном состоянии присутствует в сером чугуне (СЧ), в виде графита. Серый чугун имеет пористую металлическую структуру и является весьма хрупким; на нем легко появляются трещины (особенно в процессе сварки).

Химический состав углеродистых сталей обыкновенного качества (ГОСТ 380-71)

Система железо- углерод

Структура стали изучается по диаграмме состояния системы железо- углерод. Она характеризует структурные превращения стали и выражает зависимость структурного состояния от температурных режимов и химического состава.

Диаграмма состояния системы железо- углерод

Диаграмма состояния содержит критические точи, которые очень важны теоретически и практически для процессов термообработки стали и их анализа. С помощью диаграммы Fe-C — можно определить вид термообработки, температурный интервал изменения структуры и прогнозировать микроструктуру.

Структуры стали

Сплавы железа с углеродом при различных температурах и различном содержании «С» имеют различную структуру, а соответственно и физические и химические свойства. Одним из таких состояний и является описанный выше цементит. А теперь о них:

Аустенит – твердая структура углерода в гамма-железе — содержит «С» до 1,7% (t > 723° С). При снижении температуры аустенит распадается на феррит и цементит и возникает пластинчатая структура — перлит.

Феррит — твердый раствор «C» в α-железа- при t> 723-768° С , концентрация «С» составляет — 0,02%, а при t 20°С около 0,006% «С». Он очень пластичен, не тверд и имеет низкие магнитные свойства.

Цементит — карбид железа Fe3C. Концентрация «С» 6,63% . Цементит является хрупким , а его твердость — НВ760-800.

Перлит — механическая смесь феррита и цементита, образуемая при постепенном охлаждении в процессе распада аустенита. Исходя из размера частиц цементита перлит имеет различные механические свойства. Содержание «С» -0,8%.

Читайте так же:
Изготовление пуансонов и матриц для прессов

Ледебурит (структура чугуна) — смесь образующаяся из кристаллизация жидкого сплава цементита и аустенита. Ледебурит очень твердый, но хрупкий. Концентрация «С»-4,3%

Свойства стали

Конечно, не только углерод влияет на свойства стали. Состав дополнительных элементов и их количество придают стали определенные свойства. Примеси бывают полезными и вредными. Хорошие примеси влияют исключительно на сами кристаллы, а вредные негативно воздействуют на связь кристаллов между собой. К хорошим примесям относят : марганец (Mn), кремний (Si). К плохим: фосфор (Р), серу (S), азот, кислород и другие.

Физические и механические свойства стали

Основными физическими свойствами стали являются:

  • теплоемкость;
  • теплопроводность;
  • модуль упругости.
  • Понятие модуля упругости стали (Е) заключается в соотношении твердого вещества упруго деформироваться при воздействии силы. Данная характеристика на прямую зависит от напряжения, а точнее, является производной соотношения напряжения к упругой деформации.
  • модуль сдвига (упругость при сдвиге) (G )– величина измеряемая в Паскалях (Па), определяющая упругие свойства тела или материала и их способность сопротивляться сдвигающим деформациям. Он применяется для расчета на сдвиг, срез, кручение.
  • коэффициент линейного и коэффициент объемного расширения при изменении температуры – это величина показывающая относительное изменение линейных размеров или объема материала или тела при увеличении температуры при неизменном давлении.

Основными механическими свойствами стали являются:

  • прочность
  • твердость
  • пластичность
  • упругость
  • выносливость
  • вязкость

Показатели механических свойств углеродистых сталей обыкновенного качества ( ГОСТ 380-71)

Основными химическими свойствами стали являются:

  • степень окисления
  • устойчивость к коррозии
  • жаростойкость
  • жаропрочность

Качество стали определяется различными показателями всех ее свойств и структуры. Учитываются и свойства и изделий из этой стали.

По качеству стали разделяют на:

  • обыкновенного качества,
  • качественная сталь,
  • высококачественная сталь.

В данной статье мы рассматриваем только структуру стали и связанные с ней понятия. Качество стали, состав дополнительных примесей и их свойства будут рассмотрены в следующей публикации.

Кислотостойкая нержавеющая сталь AISI 316L

Химический состав в процентах нержавеющей стали AISI 316 L (аналог 03Х16Н15М3): таблица.

Коррозионностойкая нержавеющая сталь AISI 316L

Механические свойства (min)

Марка

Вид

SВ, Н/мм 2

S0,2, Н/мм 2

S1,0, Н/мм 2

d, %

Свойства нержавеющей стали AISI316

Одно из больших преимуществ нержавеющей стали AISI 316 состоит в том, что она обладает повышенной коррозионной стойкостью в тех областях производства, где присутствует агрессивная среда. Обладает высокой стойкостью против МКК и ножевой коррозии. Жаростойкость может достигать практически до 600 оС, и при этом сохраняется высокая пластичность.
Если сравнивать две похожие марки нержавеющей стали AISI 304 и AISI 316, то можно с уверенностью отдать предпочтение второй. Так AISI316 обладает лучшим сопротивлением ползучести при высоких температурах, на порядок улучшенными механическими свойствами при минусовых температурах. Поэтому отличие между двумя этими нержавеющими сталями на лицо.
В тех случаях, когда присутствует опасность коррозии в околошовных сварных зонах, должна быть использована низко-углеродная марка — 316L AISI. 316Ti AISI, стабилизированная титаном версия, используется для сопротивления сенсибилизации в течение продолжительного времени в температурном диапазоне 550 — 800°C.
Но, не смотря на свои большие преимущества, цена на сталь AISI 316 на порядок выше, чем у AISI 304. Поэтому, хорошо подумайте нужна ли вам нержавейка с молибденом или можно ее все таки заменить на пищевую AISI304.

Применение стали AISI316

Детали трубопровода из нержавеющей стали AISI 316 (отвод, тройник, кламп, кран, труба и т.д.) могут быть использованы в общей системе, работающие в растворах фосфорной, серной, борной, муравьиной, уксусной, лимонной, молочной, щавелевой и др. кислот.
Область применения стали AISI316
Фармацевтическое производство, нефтеперерабатывающее, газопроводное строительство, медицинская и пищевая промышленности и многое другое.

Мировые аналоги марки стали AISI 316L (аналог 03Х16Н15М3)

США

AISI 316L, 316LN

Германия

1.4429, 1.4435, X2CrNiMo18-14-3, X2CrNiMoN18-13

Япония

Франция

Z2CND17-13, Z3CND17-12-03, Z3CND18-14-08

Англия

316S11, 316S13, 316S31, LW22, LWCF22

Италия

Испания

Швеция

Контакты

Тринокс - детали из нержавеющей стали AISI304/AISI316Детали из нержавеющей стали

Купить детали из нержавеющей стали AISI 316 по низкой цене в Киеве теперь проще простого! Звоните прямо сейчас! Наши специалисты проконсультируют по всем техническим вопросам!
Мы отправляем товар любым перевозчиком по всей Украине, часто в такие города: Одесса, Днепропетровск, Харьков, Львов, Черкассы, Золотоноша, Луцк, Тернополь. Запорожье, Полтава, Винница, Кировоград, Ровно, Житомир, Николаев, Херсон, Борисполь, Бровары, Вышгород, Ирпень, Обухов, Васильков, Прилуки, Чернигов, Козятин, Умань, Бердичев, , Ивано-Франковск, Немиров, Ладыжин, Орджоникидзе, Александрия и многие другие!

Читайте так же:
Как срезать дерево бензопилой

Стали

конструкций, определяется ее механическими свойствами: сопротивлением статическим воздействиям, динамическим воздействиям и хрупкому разрушению при различных температурах; показателями пластичности – относительным удлинением; сопротивлением расслоению – загибом в холодном состоянии. Значения этих показателей устанавливаются ГОСТ. Кроме того, качество стали определяется ее свариваемостью, которая гарантируется соответствующим химическим составом стали и технологией ее производства.

По прочности стали делятся на три группы:

  • малоуглеродистые стали (обыкновенного качества)
  • стали повышенной прочности
  • стали высокой прочности

Механические свойства стали и ее свариваемость зависят от химического состава, термической обработки и технологии прокатки.

Основу стали составляет феррит. Феррит имеет малую прочность, очень пластичен, поэтому в чистом виде в строительных конструкциях не применяется. Прочность его повышают добавками углерода – малоуглеродистые стали обычной прочности; легированием марганцем, кремнием, ванадием, хромом и другими элементами – низколегированные стали повышенной прочности; легированием и термическим упрочнением стали высокой прочности.

Основные химические элементы, применяемые при легировании малоуглеродистой стали, стали повышенной и высокой прочности.

Углеродистая сталь обыкновенного качества состоит из железа и углерода с некоторой добавкой кремния или алюминия, марганца, меди.

Легированные стали более сложны и разнообразны по своему составу. В связи с желанием в обозначении марки стали отразить её химический состав, каждому химическому элементу присвоена буква русского алфавита (указана в скобках возле каждого элемента), содержание каждого элемента в процентах с округлением до целых значений указывается после буквы, обозначающей данный элемент; элемент, содержащийся в пределах 1% цифрами не указывается. Поскольку углерод содержится во всех сталях, то его обозначение (буква У) не ставится, а количественное содержание указывается в сотых долях процента в начале обозначения марки.

Так, марка стали 15Г2СФ обозначает, что в этой стали среднее содержание углерода 0,15%, марганца — в пределах 1-2%, кремния и ванадия – в пределах 1% каждого.

Углерод (У), повышая прочность стали, снижает пластичность и ухудшает ее свариваемость; поэтому в строительных сталях, которые должны быть достаточно пластичными и хорошо свариваемыми, углерод допускается в количестве не более 0,22 %.

Кремний (С), находясь в твердом растворе с ферритом, повышает прочность стали, но ухудшает ее свариваемость и стойкость против коррозии. В малоуглеродистых сталях кремний применяется как хороший раскислитель; в этом случае кремний в малоуглеродистых сталях добавляется в пределах до 0,3 %, в низколегированных сталях до 1 %.

Алюминий (Ю) входит в сталь в виде твердого раствора феррита и в виде различных нитридов и карбидов, хорошо раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость.

Марганец (Г) растворяется как в феррите, так и в цементите; образует тугоплавкие карбиды, что приводит к повышению прочности и вязкости стали. Марганец служит хорошим раскислителем, а соединяясь с серой, снижает вредное ее влияние. В малоуглеродистых сталях марганца содержится до 0,64 %, а в легированных – до 1,5 %; при содержании марганца более 1,5 % сталь становится хрупкой.

Медь (Д) несколько повышает прочность стали и увеличивает стойкость ее против коррозии. Избыточное ее содержание (более 0,7 %) способствует старению стали.

Повышение механических свойств низколегированной стали осуществляется присадкой металлов, вступающих в соединение с углеродом и образующих карбиды, а также способных растворяться в феррите и замещать атомы железа. Такими легирующими металлами являются марганец (Мn), хром (Х), ванадий (Ф), вольфрам (В), молибден (М), титан (Т). Прочность низколегированных сталей также повышается при введении никеля, меди, кремния и алюминия, которые входят в сталь в виде твердых растворов (феррита).

Читайте так же:
Как заправлять бензопилу соотношение масла и бензина

Вольфрам и молибден, значительно повышая твердость, снижают пластические свойства стали: никель повышает прочность стали и пластические ее свойства.

Молибден (М) и бор (Р) обеспечивает высокую устойчивость аустенита при охлаждении и тем самым облегчает получение закалочных структур (так называемых бейнита и мартенсита), что очень важно для получения высокопрочного проката больших толщин. После закалки и высокого отпуска (улучшения) сталь становится мелкозернистой, насыщенной карбидами; такая сталь обладает высокой прочностью, удовлетворительной пластичностью и почти не разупрочняется при сварке.

Азот (А) в несвязанном состоянии способствует старению стали и делает ее хрупкой, особенно при низких температурах. Поэтому его не должно быть более 0,008 %. В химически связанном состоянии с алюминием, ванадием, титаном или ниобием азот, образуя нитриды, становится легирующим элементом, способствующим измельчению структуры и улучшению механических свойств; однако ударная вязкость стали при низких температурах получается низкой. Увеличение сопротивления стали хрупкому разрушению обеспечивается простейшей термической обработкой – нормализацией.

Вредные примеси

К ним в первую очередь относятся: фосфор, который образуя раствор с ферритом, повышает хрупкость стали, особенно при пониженных температурах (хладноломкость) и снижает пластичность при повышенных; сера, делающая сталь красноломкой (склонной к образованию трещин при температуре 800 – 1000 С) вследствие образования легкоплавкого сернистого железа. Поэтому содержание серы и фосфора в стали ограничивается; так в углеродистой стали Ст 3 серы до 0,05 % и фосфора до 0,04 %.

Вредное влияние на механические свойства стали оказывает насыщение ее газами, которые могут попасть из атмосферы в металл, находящийся в расплавленном состоянии. Кислород действует подобно сере, но в более сильной степени и повышает хрупкость стали. Несвязанный азот также снижает качество стали. Водород хотя и удерживается в незначительном количестве (0,0007 %), но концентрируясь около включений в межкристаллических областях и располагаясь преимущественно по границам блоков, вызывает в микрообъемах высокие напряжения, что приводит к снижению сопротивления стали, хрупкому разрушению, снижению временного сопротивления и пластических свойств стали. Поэтому расплавленную сталь (например при сварке) необходимо защищать от воздействия атмосферы.

Термическая обработка

Значительного повышения прочности, деформационных и других свойств стали помимо легирования достигают термической обработкой благодаря тому, что под влиянием температуры, а также режима нагрева и охлаждения изменяются структура, величина зерна и растворимость легирующих элементов стали.

Простейшим видом термической обработки является нормализация. Она заключается в повторном нагреве проката до температуры образования аустенита и последующего охлаждения на воздухе. После нормализации структура стали получается более упорядоченной, снимаются внутренние напряжения, что приводит к улучшению прочностных и пластических свойств стального проката и его ударной вязкости. Поэтому нормализация, являясь простейшим видом термического улучшения стали, применяется довольно часто.

При быстром остывании стали, нагретой до температуры, превосходящей температуру фазового превращения, получается закалка. Для закалки необходимо, чтобы скорость остывания была выше скорости превращения фаз.

Структуры, образующиеся после закалки, придают стали высокую прочность. Однако пластичность ее снижается, а склонность к хрупкому разрушению повышается. Для регулирования механических свойств закаленной стали и образования желаемой структуры производится ее отпуск, т. е. нагрев до температуры, при которой происходят желательное структурное превращение, выдержка при этой температуре в течении необходимого времени и затем медленное остывание.

  1. механические воздействия и особенно развитие пластических деформаций (механическое старение);
  2. температурные колебания, приводящие к изменению растворимости и скорости диффузии компонентов и потому к их выделению (физико – химическое старение, дисперсионное твердение). Невысоким нагревом (до 150 – 200 С) можно резко усилить процесс старения.

При пластическом деформировании и последующем небольшом нагреве интенсивность старения резко повышается (искусственное старение). Поскольку старение понижает сопротивление динамическим воздействиям и хрупкому разрушению, оно рассматривается как явление отрицательное. Наиболее подвержены старению стали, загрязненные и насыщенные газами, например кипящая сталь.

Нераскисленные стали кипят при разливке в изложницы вследствие выделения газов; такая сталь носит название кипящей и оказывается более засоренной газами и менее однородной.

Кипящие стали, имея достаточно хорошие показатели по пределу текучести и временному сопротивлению, плохо сопротивляются хрупкому разрушению и старению.

Читайте так же:
Десульфатация акб зарядным устройством

Чтобы повысить качество малоуглеродистой стали, ее раскисляют добавками кремния от 0,12 до 0,3 % или алюминия до 0,1 %; кремний (или алюминий), соединяясь с растворенным кислородом, уменьшает его вредное влияние. При соединении с кислородом раскислители образуют в мелкодисперсной фазе силикаты и алюминаты, которые увеличивают число очагов кристаллизации и способствуют образованию мелкозернистой структуры стали, что ведет к повышению ее качества и механических свойств. Раскисленные стали не кипят при разливке в изложницы, поэтому их называют спокойными.

Спокойная сталь более однородна, лучше сваривается, лучше сопротивляется динамическим воздействиям и хрупкому разрушению. Спокойные стали применяют при изготовлении ответственных конструкций, подвергающихся статическим и динамическим воздействиям.

Полуспокойная сталь по качеству является промежуточной между кипящей и спокойной. Она раскисляется меньшим количеством кремния – в размере 0,05 – 0,15 % (редко алюминием).

Малоуглеродистые стали обыкновенного качества

Из группы малоуглеродистых сталей обыкновенного качества, производимых металлургической промышленностью по ГОСТ 380 – 88, широкое применение в строительстве находит сталь марки Ст3.

Сталь марки Ст3 производится кипящей (СТ3кп), полуспокойной (Ст3пс) и спокойной (Ст3сп).

В зависимости от назначения сталь поставляется по следующим трем группам, которые обозначают, по каким свойствам нормируется сталь:

А — по механическим свойствам;

Б — по химическому составу;

В — по механическим свойствам и химическому составу

Поскольку для несущих строительных конструкций необходимо обеспечить прочность и свариваемость, а также надлежащее сопротивление хрупкому разрушению и динамическим воздействиям, сталь для этих конструкций заказывается по группе В, т. е. с гарантией механических свойств и химического состава.

Сталь марки Ст3 содержит углерода 0,14 – 0,22 %.

Согласно ГОСТ 380 – 88, маркировка стали производится так: вначале ставится соответствующее буквенное обозначение группы стали, затем марка, далее способ раскисления и в конце категория; например, сталь группы В (поставляемой по механическим свойствам и химическому составу) марки Ст3 полуспокойная, категории 5 имеет обозначение ВСт3пс5.

Категория обозначает, какие механические св-ва стали сохраняются при температуре -20 и +20 градусов Цельсия. Стали обыкновенного качества делятся на 5 категорий. Таблица нормируемых показателей по категориям приведена в ГОСТ 535-88.

Стали повышенной и высокой прочности

Для многих видов конструкций применяются стали повышенной и высокой прочности.

Стали повышенной и высокой прочности поставляются по ГОСТ 19281 – 89 и ГОСТ 19282 – 89. В зависимости от нормируемых свойств (химического состава, временного сопротивления, предела текучести, ударной вязкости при разных температурах и после механического старения) согласно ГОСТ эти стали подразделяют на 15 категорий с гарантией механических св-в при температурах от -70, до +20 градусов Цельсия.

Применение стали повышенной прочности приводит к экономии металла до 20 – 25 %, а высокой прочности – 25 – 50 % по сравнению с обычной углеродистой сталью.

ГОСТ 27772-88

С 1988 г. Был введен ГОСТ на прокат для строительных стальных конструкций. В этом ГОСТе маркам сталей обыкновенного качества, повышенной и высокой прочности даны новые наименования, например С245, С390, С590К. Буква С означает – сталь строительная, цифры условно обозначают предел текучести проката (физические св-ва стали), буква К вариант химического состава. По данному ГОСТ стали делят на 4 категории с гарантией механических св-в при температуре -40, -70 градусов и после механического старения.

Данный ГОСТ не заменяет упомянутые выше, а существует параллельно. Так одну и ту же марку сталей по разным ГОСТам можно обозначить двумя наименованиями, например С235 и ВСт3кп2 являются одной и той же сталью. Таблица перевода наименований сталей приведена в приложении № 1 к ГОСТ 27772-88.

Возникли вопросы, звоните: (391) 281-56-56, 281-57-57. E-mail: 2265265@mail.ru

На данной странице представлена информация для получения минимальных знаний по строительным сталям. Общие сведение, добавки, примеси, термическая обработка.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector