Hydratool.ru

Журнал "ГидраТул"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реактивное сопротивление

Реактивное сопротивление

В электрических и электронных системах реактивное сопротивление (также реактанс) — это сопротивление элемента схемы, вызванное изменением тока или напряжения из-за индуктивности или ёмкости этого элемента. Понятие реактивного сопротивления аналогично электрическому сопротивлению, но оно несколько отличается в деталях.

В векторном анализе реактивное сопротивление используется для вычисления амплитудных и фазовых изменений синусоидального переменного тока, проходящего через элемент цепи. Обозначается символом X > . Идеальный резистор имеет нулевое реактивное сопротивление, тогда как идеальные катушки индуктивности и конденсаторы имеют нулевое сопротивление — то есть, реагируют на ток только по наличию реактивного сопротивления. Величина реактивного сопротивления катушки индуктивности увеличивается пропорционально увеличению частоты, в то время как величина реактивного сопротивления конденсатора уменьшается пропорционально увеличению частоты.

Содержание

Ёмкостное сопротивление [ править | править код ]

Конденсатор состоит из двух проводников, разделённых изолятором, также известным как диэлектрик.

В литературе существует два варианта определения реактивного сопротивления для конденсатора. Одним из них является использование единого понятия реактивного сопротивления в качестве мнимой части полного сопротивления, и, в этом случае, реактивное сопротивление конденсатора является отрицательным числом [1] [2] [3] :

Другой выбор состоит в том, чтобы определить ёмкостное сопротивление как положительное число [4] [5] [6] ,

В этом случае нужно помнить о добавлении отрицательного знака к импедансу то есть Z c = − j X c =-jX_> .

На низких частотах конденсатор эквивалентен разомкнутой цепи, если в диэлектрике ток не течёт.

Постоянное напряжение, приложенное к конденсатору, вызывает накопление положительного заряда на одной обкладке и накопление отрицательного заряда на другой обкладке; электрическое поле за счёт накопленного заряда является источником, который противодействует току. Когда потенциал, связанный с зарядом, точно уравновешивает приложенное напряжение, ток падает до нуля.

Приводимый в действие источником переменного тока (идеальный источник переменного тока), конденсатор будет накапливать только ограниченное количество заряда, прежде чем разность потенциалов изменит полярность и заряд вернётся к источнику. Чем выше частота, тем меньше накапливается заряд и тем меньше противодействие току.

Индуктивное сопротивление [ править | править код ]

Индуктивное реактивное сопротивление — это свойство, проявляемое индуктивностью, и индуктивное реактивное сопротивление существует благодаря тому, что электрический ток создаёт вокруг него магнитное поле. В контексте цепи переменного тока (хотя эта концепция применяется при любом изменении тока), это магнитное поле постоянно изменяется в результате изменения тока, который меняется во времени. Именно это изменение магнитного поля создаёт другой электрический ток в том же проводе (противо-ЭДС), в направлении, противоположном потоку тока, изначально ответственного за создание магнитного поля. Это явление известно как закон Ленца. Следовательно, индуктивное сопротивление — это противодействие изменению тока через элемент.

Для идеальной катушки индуктивности в цепи переменного тока сдерживающее влияние на изменение протекания тока приводит к задержке или сдвигу фаз переменного тока относительно переменного напряжения. В частности, идеальная индуктивность (без сопротивления) вызовет отставание тока от напряжения на четверть цикла или на 90°.

В электроэнергетических системах индуктивное реактивное сопротивление (и ёмкостное реактивное сопротивление, однако индуктивное реактивное сопротивление более распространено) может ограничивать пропускную способность линии электропередач переменного тока, поскольку мощность не передаётся полностью, когда напряжение и ток находятся в противофазе (подробно описано выше). То есть ток будет течь для противофазной системы, однако реальная мощность в определённые моменты времени не будет передаваться, потому что будут моменты, в течение которых мгновенный ток будет положительным, а мгновенное напряжение отрицательным, или наоборот, подразумевая отрицательную мощность передачи. Следовательно, реальная работа не выполняется, когда передача энергии является «отрицательной». Однако ток всё ещё течёт, даже когда система находится в противофазе, что приводит к нагреву линий электропередачи из-за протекания тока. Следовательно, линии электропередачи могут только сильно нагреваться (иначе они физически сильно прогибаются из-за тепла, расширяющего металлические линии электропередачи), поэтому операторы линий электропередачи имеют «потолок» в отношении величины тока, который может протекать через данную линию, и чрезмерное индуктивное сопротивление ограничивает мощность линии. Поставщики электроэнергии используют конденсаторы для сдвига фазы и минимизации потерь в зависимости от схемы использования.

Читайте так же:
Как намотать двухполярный трансформатор

Противо-ЭДС — это источник противодействия току. Постоянный ток имеет нулевую скорость изменения и рассматривает катушку индуктивности как обычный проводник (так как она сделано из материала с низким удельным сопротивлением). Переменный ток имеет усреднённую по времени скорость изменения, которая пропорциональна частоте, что вызывает увеличение индуктивного сопротивления с частотой.

Полное сопротивление [ править | править код ]

  • Z  — импеданс, измеряемый в омах;
  • R  — сопротивление, измеряемый в омах. Это также действительная часть импеданса: R = ℜ ( Z ) >>
  • X  — реактанс, измеряемый в омах. Это также мнимая часть импеданса: X = ℑ ( Z ) >>
  • j  — мнимая единица, чтобы отличать от тока, который обозначается обычно i .

Когда и конденсатор и индуктор соединены последовательно в цепь, их вклады к полному импедансу цепи противоположны. Ёмкостное сопротивление X C >> , и индуктивное сопротивление X L >> ,

вносят свой вклад в общее реактивное сопротивление X > в виде суммы

Особенности индуктивного сопротивления

Когда в цепи нарастает или уменьшается ток, электромагнитное поле создает противодействующую электродвижущую силу. Это явление порождается индуктивностью катушки. Индуктивное сопротивление воздействует только на переменный ток, быстрые изменения которого порождают противодействующую силу. В статье будет более подробно рассказано о природе этого явления.

Что зовется индуктивным сопротивлением

Когда на катушку подают переменное напряжение, ток, проходящий по ней, меняется согласно поданному напряжению. Это служит причиной изменения магнитного поля, создающего электродвижущую силу, препятствующую происходящему.

Схема для измерения

В такой цепи имеется зависимость электрических параметров от двух видов: обычного и индуктивного. Они обозначаются, соответственно, как R и XL.

На обычном происходит выделение мощности. Однако на реактивных элементах она является нулевой. Это связано с постоянным изменением направления переменного тока.

В течение одного периода колебаний энергия дважды закачивается в катушку и столько же раз возвращается в источник.

Определение индуктивности

От каких факторов зависит сопротивление

Изменение силы тока создает электромагнитное поле переменной интенсивности. Результатом его воздействия на проводник является противодействие происходящему изменению тока.

Это противодействие называется реактивным сопротивлением. Существуют две его разновидности: индуктивная и емкостная. Первая создается при наличии в схеме индуктивного элемента, вторая — конденсатора.

В ситуации, когда в цепи присутствует катушка, ее реакция усиливается по мере увеличения частоты.

Цепь, в которой возникает индукция

В случае, когда ее индуктивность уменьшается, то противодействующая сила также становится меньше. При увеличении она возрастает.

Индуктивное сопротивление существенно связано с тем, какую форму принимает проводник. Оно имеется также и у отдельного провода, лежащего прямо. Однако если рядом будет еще один, то он будет оказывать воздействие дополнительно, что повлияет на рассматриваемую величину.

Рассматриваемую характеристику отдельного провода можно определять в зависимости от его толщины, но оно никак не связано с его сечением.

Принцип действия электродвижущей силы

Катушка индуктивности

Он представляет собой изолированный провод, многократно намотанный вокруг сердечника.

Обычно каркас имеет цилиндрическую или тороидальную форму.

Индуктивность рассматривается в качестве основной характеристики катушки. Это качество выражает способность элемента осуществлять преобразование переменного тока в магнитное поле.

Важно! Магнитные свойства существуют даже у одиночного провода, при условии, что изменяется проходящий через него ток. Воздействие поля направлено так, чтобы противодействовать его изменению. Если он будет увеличиться, поле будет его тормозить, а если ослабевать — усиливать.

Катушки индуктивности

Определение направления силовых линий подчиняется «правилу большого пальца»: если у сжатой в кулак руки большой палец указывает в направлении изменения силы тока, то сомкнутые пальцы подсказывают направление силовых линий поля.

Таким образом в том случае, если провод многократно намотан на цилиндрическое основание, то силовые линии от разных витков складываются и проходят через ось.

Для того, чтобы многократно увеличить индуктивность, в центр цилиндра помещают сердечник из ферромагнитного материала.

Индуктивное сопротивление – единицы измерения

Измерение этой величины производится в омах. Здесь используются такая же единица измерения, как и для резистора, несмотря на то, что у них различная природа. Рассматриваемая величина порождается электродвижущей силой, противодействующей происходящему изменению. Обычное возникает в связи с рассеиванием энергии при прохождении электронов по проводнику.

Магнитное поле индуктивного элемента

Индуктивное сопротивление – как его найти

Реальная катушка имеет не только реактивное, но и обычное сопротивление. Индуктивное сопротивление определяется по формуле:

Здесь употреблены следующие обозначения:

  1. XL – рассматриваемая величина.
  2. Символом «П» обозначено число Пи.
  3. V представляет собой частоту.
  4. L — это обозначение величины индуктивности.

Надо отметить, что величина (2*П*v) представляют собой круговую частоту, которую обозначают греческим символом «омега».

Катушки с различными сердечниками

Рассматриваемая величина подчиняется закону Ома. Формула выглядит так:

I, U представляют собой ток и напряжение, XL – это индуктивное сопротивление.

Конфигурация магнитного поля катушки

Для определения искомой величины можно воспользоваться приведенными формулами. При этом можно воспользоваться амперметром и вольтметром. Первый из них надо включить последовательно, второй — параллельно.

При этом необходимо учитывать следующее. На самом деле, в цепи, в которую включена индуктивность, действует два вида сопротивления: активное и реактивное. Измерив ток и напряжение, можно определить их результирующую величину. Нужно помнить, что она не является их простой суммой.

Дело в том, что в переменной цепи, где имеется только катушка и нет конденсатора, напряжение находится впереди тока на четверть периода колебания. Эта величина равна 90 градусам.

Полное сопротивление определяется следующим образом. Для этого необходимо нарисовать соответствующую диаграмму. Если по горизонтали отложить величину обычного, а по вертикали — реактивного, а затем по этим векторам построить прямоугольник, то длина его диагонали будет равна полному значению.

Магнитное поле провода

К примеру, если подобрать элементы цепи таким образом, чтобы по абсолютной величине обе этих величины были равны, то искомая часть определится как их полное значение, умноженное на квадратный корень из двух.

Для того, чтобы получить информацию о зависимости индуктивного сопротивления от частоты, возможно воспользоваться осциллографом.

При использовании переменного тока необходимо учитывать не только обычное, но и индуктивное сопротивление. Оно возникает в том случае, если в электрической цепи присутствует катушка.

Емкостное и индуктивное сопротивление в цепи переменного тока

Если мы включим конденсатор в цепь постоянного тока, то обнаружим, что он оказывает бесконечно большое сопротивление, поскольку постоянный ток просто не может пройти через диэлектрик между обкладками, так как диэлектрик по определению не проводит постоянный электрический ток.

Конденсатор разрывает цепь постоянного тока. Но если тот же конденсатор включить теперь в цепь переменного тока, то окажется, что ее конденсатор будто бы и не разрывает полностью, он просто попеременно заряжается и разряжается, то есть электрический заряд движется, и ток во внешней цепи поддерживается.

Опираясь на теорию Максвелла, в этом случае можно сказать, что переменный ток проводимости внутри конденсатора все же замыкается, только в данном случае — током смещения. Значит конденсатор в цепи переменного тока выступает неким сопротивлением конечной величины. Такое сопротивление называется емкостным.

Емкостное и индуктивное сопротивление в цепи переменного тока

Практика давно показала, что величина переменного тока, текущего через провод, зависит от формы этого провода и от магнитных свойств среды вокруг него. При прямом проводе ток будет наибольшим, а если этот же провод свернуть в катушку с большим количеством витков, то величина тока окажется меньше.

А если в ту же катушку еще и ввести ферромагнитный сердечник, то ток еще сильнее уменьшится. Следовательно проводник оказывает переменному току не только омическое (активное) сопротивление, но еще и некое дополнительное сопротивление, зависящее от индуктивности проводника. Данное сопротивление называется индуктивным.

Его физический смысл состоит в том, что изменяющийся ток в проводнике, обладающем некой индуктивностью, инициирует в этом проводнике ЭДС самоиндукции, стремящуюся препятствовать изменениям тока, то есть стремящуюся уменьшить ток. Это равносильно увеличению сопротивления проводника.

Емкостное сопротивление в цепи переменного тока

Емкостное сопротивление в цепи переменного тока

Для начала поговорим более подробно о емкостном сопротивлении. Допустим, что конденсатор емкостью С подключен к источнику синусоидального переменного тока, тогда ЭДС этого источника будет описываться следующей формулой:

ЭДС источника

Падением напряжения на соединительных проводах пренебрежем, так как оно обычно очень мало, а при необходимости его можно будет рассмотреть отдельно. Примем сейчас, что напряжение на обкладках конденсатора равно напряжению источника переменного тока. Тогда:

Напряжение на обкладках конденсатора

В любой момент времени заряд на конденсаторе зависит от его емкости и от напряжения между его обкладками. Тогда для данного известного источника, о котором говорилось выше, получим выражение для нахождения заряда на обкладках конденсатора через напряжение источника:

Заряд на обкладках конденсатора

Пусть за бесконечно малое время dt заряд на конденсаторе изменяется на величину dq, тогда по проводам от источника к конденсатору потечет ток I, равный:

Ток

Амплитудное значение тока окажется равно:

Амплитудное значение тока

Тогда окончательное выражение для тока будет иметь вид:

Ток

Перепишем формулу для амплитуды тока в следующем виде:

Амплитудное значение тока

Данное соотношение есть закон Ома, где величина обратная произведению угловой частоты на емкость играет роль сопротивления, и по сути являет собой выражение для нахождения емкостного сопротивления конденсатора в цепи синусоидального переменного тока:

Емкостное сопротивление конденсатора

Значит емкостное сопротивление обратно пропорционально угловой частоте тока и емкости конденсатора. Легко понять и физический смысл данной зависимости.

Чем больше емкость конденсатора в цепи переменного тока и чем чаще изменяется направление тока в этой цепи, тем в конце концов больший суммарный заряд проходит за единицу времени через поперечное сечение проводов, соединяющих конденсатор с источником переменного тока. Значит ток пропорционален произведению емкости и угловой частоты.

Для примера выполним расчет емкостного сопротивления конденсатора электроемкостью 10 мкф для цепи синусоидального переменного тока с частотой 50 Гц:

Расчет емкостного сопротивления конденсатора

Если бы частота была 5000 Гц, то тот же самый конденсатор представлял бы собой сопротивление около 3 Ом.

Из приведенных выше формул ясно, что ток и напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах. Фаза тока опережает фазу напряжения на пи/2 (90 градусов). А значит максимум тока во времени существует всегда на четверть периода раньше, чем максимум напряжения. Таким образом на емкостном сопротивлении ток опережает напряжение на четверть периода по времени или на 90 градусов по фазе.

Напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах

Давайте поясним физический смысл данного явления. В самый первый момент времени конденсатор полностью разряжен, поэтому самое малое приложенное к нему напряжение уже перемещает заряды на пластинах конденсатора, создавая ток.

По мере того как конденсатор заряжается, напряжение на его обкладках увеличивается, оно препятствует дальнейшему притоку заряда, поэтому ток в цепи уменьшается невзирая на дальнейший рост прикладываемого к обкладкам напряжения.

Значит, если в начальный момент времени ток был максимальным, то когда напряжение достигнет своего максимума через четверть периода, ток прекратится вовсе.

В начале периода ток максимален а напряжение минимально и начинает нарастать, но через четверть периода напряжение достигает максимума, но ток к этому моменту уже упал до нуля. Вот и получается опережение током напряжения на четверть периода.

Индуктивное сопротивление в цепи переменного тока

Индуктивное сопротивление в цепи переменного тока

Теперь вернемся к индуктивному сопротивлению. Допустим, что через катушку, обладающую индуктивностью, течет переменный синусоидальный ток. Его можно выразить так:

Ток

Ток обусловлен приложенным к катушке переменным напряжением. Значит на катушке возникнет ЭДС самоиндукции, которая выражается следующим образом:

ЭДС самоиндукции

Снова пренебрежем падением напряжения на проводах, соединяющих источник ЭДС с катушкой. Их омическое сопротивление очень мало.

Пусть приложенное к катушке переменное напряжение в каждый момент времени полностью уравновешивается возникающей ЭДС самоиндукции, равной ему по величине, но противоположной по направлению:

ЭДС

Тогда имеем право записать:

ЭДС

Поскольку амплитуда приложенного к катушке напряжения равна:

Амплитуда приложенного к катушке напряжения

ЭДС

Выразим максимальный ток следующим образом:

Ток

Это выражение по сути является законом Ома. Величина равная произведению индуктивности на угловую частоту играет здесь роль сопротивления, и представляет собой ни что иное, как индуктивное сопротивление катушки индуктивности:

Индуктивное сопротивление катушки индуктивности

Так, индуктивное сопротивление пропорционально индуктивности катушки и угловой частоте переменного тока, через данную катушку пропускаемого.

Это объясняется тем, что индуктивное сопротивление обусловлено влиянием ЭДС самоиндукции на напряжение источника, — ЭДС самоиндукции стремится уменьшить ток, а значит сносит в цепь сопротивление. Величина ЭДС самоиндукции, как известно, пропорциональна индуктивности катушки и скорости изменения тока через нее.

Для примера рассчитаем индуктивное сопротивление катушки с индуктивностью 1 Гн, которая включена в цепь с частотой тока 50 Гц:

Расчет индуктивного сопротивления

Если бы частота бала 5000 Гц, то сопротивление этой же катушки оказалось бы равно приблизительно 31400 Ом. Напомним, что омическое сопротивление провода катушки составляет обычно единицы Ом.

Изменения тока через катушку и напряжения на ней, происходят в разных фазах

Из приведенных выше формул очевидно, что изменения тока через катушку и напряжения на ней, происходят в разных фазах, причем фаза тока всегда меньше чем фаза напряжения на пи/2. Следовательно максимум тока наступает на четверть периода позже наступления максимума напряжения.

На индуктивном сопротивлении ток отстает от напряжения на 90 градусов из-за тормозящего действия ЭДС самоиндукции, которая препятствует изменению тока (и нарастанию, и убыванию), вот почему максимум тока наблюдается в цепи с катушкой позднее максимума напряжения.

Совместное действие катушки и конденсатора

Если включить в цепь переменного тока последовательно катушку с конденсатором, то напряжение на катушке будет опережать напряжение на конденсаторе по времени на половину периода, то есть на 180 градусов по фазе.

Емкостное и индуктивное сопротивление называются реактивными сопротивлениями. На реактивном сопротивлении энергия не расходуется как на активном. Энергия накапливаемая в конденсаторе периодически возвращается обратно к источнику, когда электрическое поле в конденсаторе исчезает.

Так же и с катушкой: пока магнитное поле катушки создается током, энергия в ней на протяжении четверти периода накапливается, а в следующую четверть периода возвращается к источнику. В данной статье речь шла о синусоидальном переменном токе, для которого данные положения выполняются строго.

В цепях синусоидального переменного тока катушки индуктивности с сердечниками, называемые дросселями, традиционно используются для ограничения тока. Их преимущество перед реостатами в том, что энергия не рассеивается в огромном количестве в форме тепла.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Электрическое сопротивление. Определение, единицы измерения, удельное, полное, активное, реактивное.

Электрическое сопротивление

Электрическое сопротивление — электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это проводимость.

Единица измерения электрического сопротивления — Ом. Обозначается буквой R. Зависимость сопротивления от тока и напряжения в замкнутой цепи определяется законом Ома.

Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

Z

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;C1

( С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока; XL

( L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление— это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение напряжения (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче напряжения происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Кроме того, возникает устойчивый сдвиг фаз напряжения и силы тока, а это приводит к дополнительным потерям электроэнергии.

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет ток и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материалов

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

R

где,p— удельное сопротивление (единицы измерения ом*м/мм 2 );

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector