Где взять конденсаторы для пуска двигателя
Где взять конденсаторы для пуска двигателя
В процессе работы двигателей по обмотке течет ток, на 20-40% превышающий номинальный, поэтому при использовании электромотора в недозагруженном режиме или в режиме холостого хода, емкость рабочего конденсатора следует уменьшить.
В целях безопасности все пусковые конденсаторы должны использоваться с разрядным резистором. Сопротивление разрядного резистора подбирается так, чтобы по истечении 50 секунд полностью снять остаточное напряжение с конденсатора.
В случаях когда конденсатор используется при последовательной схеме включения со вспомогательной обмоткой электродвигателя, напряжение на клеммах конденсатора при рабочей скорости может быть значительно выше напряжения сети.
В процессе эксплуатации конденсаторов они могут устанавливаться непосредственно в физическом контакте с электродвигателем. В этом случае при выборе типа конденсатора необходимо учитывать, что конденсатор будет подвергаться воздействию повышенной температуры и вибраций — как от самого электродвигателя, так и от других пассивных элементов различного рода устройств, в составе которых будет применятся конденсатор.
При работе моторных конденсаторов проходят различного рода сложнейшие коммутационные процессы, в результате которых происходят скачкообразные изменения напряжения на клеммах конденсатора, в связи с чем номинальное напряжение конденсатора нужно выбирать так, чтобы в процессе работы изделия рабочее напряжение не превышало его более чем на 10%.
В процессе выбора необходимой емкости и рабочего напряжения нужно учитывать фактор резонанса, то есть когда значения напряжения вспомогательной обмотки электродвигателя и конденсатора находятся в околорезонансной точке. В этом случае происходит повышение напряжения на клеммах изделия.
Предельное напряжение на клеммах пускового конденсатора должно быть не более 450В, а его емкость выбирается, как правило, в два и более раз больше емкости рабочего конденсатора.
Как показывает практика, на каждые 100 Вт мощности электродвигателя требуется около 6-7 мкФ.
В случае, если не удается подобрать емкость в одном корпусе, допускается комбинирование путем параллельного соединения конденсаторов Собщ=С1+С2….+Сn.
При правильно подобранном конденсаторе мощность трехфазного двигателя, включенного в однофазную сеть, не должна уменьшиться более чем на 30%.
Область применения конденсаторов для асинхронных двигателей
рабочий | пусковой | |
Применение | В схемах асинхронных электродвигателей | В схемах асинхронных электродвигателей |
Тип подключения | Последовательно со вспомогательной обмоткой электродвигателя | Параллельно рабочему конденсатору |
В качестве | Является фазосмещающим элементом | |
Предназначение | Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя | Позволяет получить магниное поле, необходимое для повышения пускового момента электродвигателя |
Время включения | В процессе работы электродвигателя | В момент пуска электродвигателя |
Существуют две основные области применения конденсаторов для асинхронных электродвигателей.
1) Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть
В случае когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения: «звезда» и «треугольник», причем наиболее предпочтительным во многих случаях является вариант «треугольник».
Приблизительный расчет для данного типа соединения производится по следующей формуле:
- k – коэффициент, зависящий от соединения обмоток.
- Iф – номинальный фазный ток электродвигателя А.
- Uсети – напряжение однофазной сети В.
Для схемы соединения «Звезда» k=2800
Для схемы соединения «Треугольник» k=4800
Для определения пусковой емкости Спуск. исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.
Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп.=(2.5-3) Ср.
Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети.
Схема подключения
Рис 1. Схема включения в однофазную сеть трехфазного асинхронного двигателя с обмотками статора, соединенными по схеме «звезда» (а) или «треугольник» (б):
- B1 Переключатель направления вращения (реверс)
- В2 — Выключатель пусковой емкости;
- Ср — рабочий конденсатор;
- Cп — пусковой конденсатор;
- АД — асинхронный электродвигатель.
2) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. конденсаторного асинхронного электродвигателя по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю. Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов.
Схема подключения
Рис 2. Схема (а) и векторная диаграмма (б) конденсаторного асинхронного двигателя:
Подключение электродвигателя через конденсатор: расчет и схема
Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.
Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.
Коротенько про трехфазные асинхронные электродвигатели
Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.
Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор — вращающаяся часть, статор неподвижная (на рисунке его не видно).
Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже — С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный — С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.
Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов — аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.
работа трехфазного электродвигателя без одной фазы при постоянной нагрузке
Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.
А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.
почему для пуска от однофазной сети используют именно конденсаторы
Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.
На схеме мы видим, что обмотка разделилась на две ветви — пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.
Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.
А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.
Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.
как подключить электродвигатель через конденсатор
Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.
Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя.
конденсаторы для запуска электродвигателя
Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.
Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:
схема “звезда”:
Рабочая емкость = 2800*Iном.эд/Uсети
схема “треугольник”:
Рабочая емкость = 4800*Iном/Uсети
Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.
В формулах выше Iном — это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети — напряжение питающей сети(
220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:
Например, напряжение сети
220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.
Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются — пусковыми.
Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.
2020 Помегерим! — электрика и электроэнергетика
Пусковой конденсатор для электродвигателя
Пусковой конденсатор – устройство, необходимое для стабильной работы электродвигателя. Он начинает работать непосредственно в момент старта электромотора, так как именно в это время на двигатель действует наибольшая нагрузка. Как только двигатель выходит на рабочую частоту, пусковой конденсатор отключается и больше не используется до следующего запуска. Он отвечает только за запуск двигателя под нагрузкой, также он обеспечивает сдвиг фаз меж пусковой и рабочей обмоткой.
Конструкция и назначение пускового конденсатора
Конденсатор представляет собой устройство, способное накапливать электрический заряд: он состоит из двух проводящих пластик, расположенных на небольшом отдалении друг от друга и разделенных диэлектрическим материалов. Все конденсаторы обладают несколькими характерными особенностями:
- Специальный материал выполняет функции диэлектрика. Для конденсаторов пускового типа эту роль часто играет оксидная пленка, которая наносится на электрод.
- Полярные накопители отличаются небольшими габаритными размерами, которые сочетаются с внушительной емкостью.
- Неполярные конденсаторы больше по размеру, однако их можно устанавливать в цепь, не учитывая полярность.
Пусковой конденсатор двигателя выполняет несколько функций: он повышает показатели магнитного потока и пусковой момент, в результате работоспособность электромотора улучшается. Если этого элемента нет в системе, срок эксплуатации двигателя значительно сокращается, в его работе намного раньше возникнут различные неполадки.
Схема подключения двигателя с пусковым конденсатором
Пусковой конденсатор для электродвигателя играет важную защитную роль, поэтому он является обязательным компонентом схемы. При сборке цепи питания необходимо учитывать несколько обязательных моментов:
- В цепи присутствует рабочий конденсатор, он используется в течение всего времени работы электродвигателя.
- Перед рабочим конденсатором предусматривается разветвление, идущее на выключатель. Он отвечает запуск электродвигателя.
- Пусковой конденсатор подключается к цепи после конденсатора. При подаче сигнала он успевает начать работать в течение нескольких секунд, в то время как ротор начинает набирать обороты.
- Электрическая цепь от обоих конденсаторов идет к электромотору.
Таким образом пусковой и рабочий конденсатор подключаются к цепи параллельно, но первый работает только несколько секунд до выхода двигателя на рабочий уровень показателей, а второй – в течение всего времени эксплуатации двигателя.
Помощь при выборе пусковых конденсаторов
АО «Электроинтер» поможет подобрать и купить пусковой конденсатор подходящей емкости. Сотрудники компании предоставят подробную информацию по работе электрической цепи и помогут определиться с выбором оборудования. Получите необходимые консультации специалистов, чтобы обеспечить стабильную работу двигателя и защитить его от износа.
Конденсатор для электродвигателя: как правильно выбрать и как пользоваться
Многие владельцы довольно часто оказываются в ситуации, когда требуется подключить в гараже или на даче такое устройство, как трехфазный асинхронный двигатель к различному оборудованию, в качестве которого может выступать наждачный или сверлильный станок. При этом возникает проблема, поскольку источник рассчитан на однофазное напряжение. Что же здесь делать? На самом деле эту проблему решить довольно легко путем подключения агрегата по схемам, используемым для конденсаторных. Чтобы реализовать этот замысел, потребуются рабочее и пусковое устройство, часто именуемые как фазосдвигающие.
Выбор ёмкости
Для обеспечения правильной работы электродвигателя нужно рассчитать определённые параметры.
Для рабочего конденсатора
Чтобы подобрать эффективную емкость устройства, необходимо выполнить расчеты по формуле:
- I1 – номинальный показатель тока статора, для измерения которого применяют специальные клещи;
- Uсети – напряжение сети с одной фазой, (В).
После выполнения расчетов получится емкость рабочего конденсатора в мкФ.
Возможно для кого-то будет затруднительно рассчитать этот параметр по приведенной выше формуле. Однако в этом случае можно воспользоваться и другой схемой расчета емкости, где не нужно проводить столь сложных операций. Этот метод позволяет достаточно просто определить необходимый параметр на основании только мощности асинхронного двигателя.
Здесь достаточно помнить о том, что 100 Ватт мощности трехфазного агрегата должно соответствовать около 7 мкФ емкости рабочего конденсатора.
При расчётах нужно следить за током, который поступает на фазную обмотку статора в выбранном режиме. Недопустимым считается, если ток имеет большее значение, нежели номинальный показатель.
Для пускового конденсатора
Бывают ситуации, когда электродвигатель приходится включать в условиях большой нагрузки на валу. Тогда одного рабочего конденсатора будет недостаточно, поэтому к нему придется добавить пусковой конденсатор. Особенностью его работы является то, что он будет работать лишь в период пуска аппарата не более 3 секунд, чего используется ключ SA. Когда же ротор выйдет на уровень номинальной частоты вращения, прибор отключается.
Если по недосмотру владелец оставил включенными пусковые устройства, это приведет к образованию существенного перекоса по токам в фазах. В таких ситуациях высока вероятность перегрева двигателя. При определении емкости следует исходить из того, что величина этого параметра должна в 2,5-3 раза превосходить емкость рабочего конденсатора. Действуя подобным образом, можно добиться того, что пусковой момент двигателя достигает номинального показателя, в результате чего во время его запуска не возникает осложнений.
Для создания требуемой емкости конденсаторы могут подключаться по параллельной и последовательной схеме. Следует иметь в виду эксплуатация трехфазных агрегатов мощностью не более 1 кВт допускается в том случае, если их подключение осуществляется к однофазной сети при наличии исправного устройства. Причем здесь можно обойтись и без пускового конденсатора.
После расчетов нужно определить, какой тип конденсатора может использоваться для выбранной схемы
Наилучший вариант, когда применяется аналогичный тип для обоих конденсаторов. Обычно работу трехфазного двигателя обеспечивают бумажные пусковые конденсаторы, облаченные в стальной герметичный корпус типа МПГО, МБГП, КБП или МБГО.
Большая часть этих устройств выполнена в виде прямоугольника. Если взглянуть на корпус, то там приведены их характеристики:
- Емкость (мкФ);
- Рабочее напряжение (В).
Применение электролитических устройств
Используя бумажные пусковые конденсаторы, нужно помнить о следующем негативном моменте: они имеют довольно большие размеры, обеспечивая при этом небольшую емкость. По этой причине для эффективной работы трехфазного двигателя небольшой мощности приходится использовать достаточно большое количество конденсаторов. При желании бумажные можно заменить и электролитическими. В этом случае их необходимо подключать несколько иным способом, где обязательно должны присутствовать дополнительные элементы, представленные диодами и резисторами.
Однако специалисты не советуют использовать электролитические пусковые конденсаторы. Это связано с наличием у них серьезного недостатка, который проявляется в следующем: если диод не справится со своей задачей, на устройство начнет продаваться переменный ток, а это уже чревато его нагревом и последующим взрывом.
Другая причина состоит в том, что сегодня на рынке можно встретить улучшенные с металлизированным покрытием полипропиленовые пусковые модели переменного тока типа СВВ.
Чаще всего они рассчитаны на работу с напряжением 400-450 В. Как раз им и следует отдать предпочтение, учитывая, что они неоднократно показывали себя с хорошей стороны.
Напряжение
Рассматривая различные типы пусковых выпрямителей трехфазного двигателя, подключаемого к однофазной сети, следует принимать во внимание и такой параметр, как рабочее напряжение.
Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый. Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов.
В то же время не стоит рассматривать модели, в которых напряжение имеет меньший показатель, нежели напряжение сети. Устройства с такими характеристиками не смогут эффективно выполнять свои функции и довольно скоро выйдут из строя.
Чтобы свести к не ошибиться при выборе рабочего напряжения , следует придерживаться следующей схемы расчета: итоговый параметр должен соответствовать произведению фактического напряжения сети и коэффициента 1,15, при этом расчетное значение должно составлять не менее 300 В.
В том случае, если выбираются бумажные выпрямители для работы в сети переменного напряжения, то их рабочее напряжение нужно разделить на 1,5-2. Поэтому рабочее напряжение для бумажного конденсатора, для которого производитель указал напряжение в 180 В, в условиях работы в сети переменного тока составит 90-120 В.
Дабы понять, как на практике реализуется идея подключение трехфазного электродвигателя к однофазной сети, выполним эксперимент с использованием агрегата АОЛ 22-4 мощностью 400 (Вт) . Главная задача, которая должна быть решена – запуск двигателя от однофазной сети с напряжением 220 В.
Используемый электродвигатель имеет следующие характеристики:
- показатель мощности вчера– 400 кВт;
- напряжение сети 220В переменного напряжения;
- Ток, все характеристики которого были определены при помощи электроизмерительных клещей в трехфазном режиме работы– 1,9А;
- Схема подключения обмоток «звезда».
Помня о том, что используемый электродвигатель имеет небольшую мощность, при подключении его к однофазной сети можно купить лишь рабочий конденсатор.
Расчет емкости рабочего выпрямителя:
Пользуясь приведенными формулами, возьмем за среднее значение емкости рабочего выпрямителя показатель 25 мкФ. Здесь была выбрана несколько большая емкость, равная 10 мкФ. Так мы попытаемся выяснить, как влияет такое изменение на пуск аппарата.
Теперь нам необходимо купить выпрямители, в качестве последних будут использоваться конденсаторы типа МБГО. Далее на основе подготовленных выпрямителей выполняется сборка требуемой емкости.
В процессе работы следует помнить, что каждый такой выпрямитель имеет емкость 10 мкФ.
Если взять два конденсатора и соединить их друг с другом по параллельной схеме, то итоговая емкость составит 20 мкФ. При этом показатель рабочего напряжения будет равен 160В. Для достижения требуемого уровня в 320 В необходимо взять эти два выпрямитель и подключить их еще к такой же паре, конденсаторов, соединенных параллельно, но уже применив последовательную схему. В итоге суммарная емкость составит 10 мкФ. Когда батарея рабочих конденсаторов будет готова, подключаем ее к двигателю. Далее останется только запустить его в однофазной сети.
В процессе проведенного эксперимента с подключением двигателя к однофазной сети работа потребовала меньше времени и сил. Используя подобный агрегат с выбранной батареей выпрямителей, следует учесть, что его полезная мощность будет находиться на уровне до 70-80 % от номинальной мощности, при этом частота вращения ротора будет соответствовать номинальному показателю.
Важно: если используемый двигатель рассчитан на сеть напряжением 380/220 В, то при подключении к сети следует использовать схему «треугольник».
Обращайте внимание на содержание бирки: бывает так, что там приведено изображение звезды с напряжением 380 В. В этом случае правильную работу двигателя в сети можно обеспечить, выполнив следующие условия. Сперва придется «распотрошить» общую звезду, после чего соединить с клеммником 6 концов. Искать общую точку следует в лобовой части двигателя.
Видео: подключение однофазного двигателя в однофазную сеть
Решение об использовании пускового конденсатора следует принимать исходя из конкретных условий, чаще всего оказывается достаточно рабочего. Однако если используемый двигатель подвергается повышенной нагрузке, то эксплуатацию рекомендуется остановить. В этом случае необходимо правильно определить необходимую емкость устройства, чтобы обеспечить эффективную работу агрегата.
КОНДЕНСАТОРЫ ПУСКОВЫЕ и РАБОЧИЕ
В случае когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения: «звезда» и «треугольник» , причем наиболее предпочтительным во многих случаях является вариант «треугольник». Приблизительный расчет для данного типа соединения производится по следующей формуле:
- k – коэффициент, зависящий от соединения обмоток.
- Iф – номинальный фазный ток электродвигателя А.
- Uсети – напряжение однофазной сети В.
Для схемы соединения «Звезда» k=2800, для схемы соединения «Треугольник» k=4800 Для определения пусковой емкости С пуск . исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением
С пуск = (2.5 — 3) Сраб .
Однофазные электрические машины (асинхронные) момент не теряют. Однако пусковой момент у них достаточно низок. Это обстоятельство нужно учитывать при проектировании.
2) Однофазный асинхронный двигатель на самом деле никакой не однофазный!
Речь далее пойдет только об асинхронниках. Если его расковырять, на проверку он оказывается ДВУХФАЗНЫМ . Следствием его реальной двухфазности является геометрическое размещение обмоток под углом 90 градусов одна к другой (даже если двигатель многополюсный). Посему, для создания кругового поля необходимо, чтобы токи в этих обмотках также были сдвинуты на 90 град. .
Точно то же самое мы можем получить, формируя напряжения, сдвинутые на 90 град., на обмотках с помощью двух независимых однофазных мостовых инверторов, выбросив при этом конденсатор.
Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. В конденсато р ном двигателе, естественно, это достигается за счет включения конденсатора, как на Рис.2. Выбирается он, так, чтобы вектор потокосцепления описывал кривую, как можно более близкую к окружности. Существуют схемы, использующие два конденсатора: пусковой и рабочий. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. конденсаторного асинхронного электродвигателя по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю. Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов.