Hydratool.ru

Журнал "ГидраТул"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как наносится гальваническое покрытие на производстве и в домашних условиях

Как наносится гальваническое покрытие на производстве и в домашних условиях

В деятельности каждого грамотного электрика встречаются моменты, требующие точного анализа явлений, происходящих при электролизе. Во многих случаях возникает необходимость точной настройки источников постоянного тока на рабочий режим с различными временны?ми характеристиками для полной автоматизации процесса.

Впервые основные законы, описывающие действие постоянного тока на поведение растворенных в электролитах веществ, установил английский ученый Майкл Фарадей.

Основопологающие принципы электролиза

Физико-химические процессы электролиза происходят в электролитической ячейке.

Электролитическая ячейка

Она изготавливается в сосуде с электролитом. Внутри корпуса размещены два электрода, на которые подаются положительный и отрицательный заряды от управляемого источника постоянного напряжения. Сила тока, протекающего по общей цепи, регулируется по величине и контролируется оператором по измерительным приборам. Автоматизированные электрические ячейки работают под присмотром электроники.

Электрод, на который подается положительный заряд, называют «Анод», а отрицательный — «Катод». Под действием тока в электролите образуются ионы с зарядами противоположных знаков:

Положительно заряженные ионы называют «Катионами» потому, что, они движутся к катоду. Анионы — это ионы отрицательного заряда, притягиваемые к аноду.

Технологии, происходящие при электролизе, находятся на стыке двух наук:

Поэтому исторически сложилась практика, что гальванотехникой занимается специальный раздел электрохимии, изучающий как электрохимические, так и физические явления, которые происходят во время осаждения катионов металла на любом виде анода. Это делается для подбора оптимальных условий технологии, разработки специальных приемов и методов обработки, подбора номинальных режимов оборудования во время осаждения определенных металлов на различных подложках.

На практике гальванотехника давно разделилась на два отдельных, независимых направления:

Эти методы работают примерно по одинаковым технологиям, но отличаются материалами основы, на которую наносится гальваническое покрытие.

Это способ создания поверхностной копии объемного изображения неметаллической детали. Материалами основы могут служить легкообрабатываемые гипс, камень, дерево, пластмассовые заготовки и другие вещества.

В художественных мастерских создают уникальные формы украшений при покрытии слоем металла листочков различных деревьев, цветков, насекомых.

Основоположником гальванопластики считается россиянин Борис Семенович Якоби, разработавший технологию, позволившую создать знаменитые металлические скульптуры, которые украшают до сих пор здание Исаакиевского собора в Санкт Петербурге. За эту работу он получил всемирное признание, был поощрен самой почетной для ученых России Демидовской премией и награжден большой золотой медалью во время прохождения торжественной церемонии на Парижской выставке.

Фрагменты скульптур на Исакиевском соборе, выполненные методом гальванопластики

Толщина изделий, создаваемых методами гальванопластики, отличается увеличенными размерами для придания им прочности при эксплуатации. Она может достигать от 0,25 до двух и более миллиметров. Это реализуется длительностью протекания электрохимических процессов.

Гальванопластикой в художественных изделиях чаще всего наносят цветные благородные металлы:

Методы нанесения гальванических покрытий

Все гальванические процессы происходят по довольно простой схеме. Имеется система, состоящая из изделия, на которое наносится какое либо покрытие, раствор, в который это изделие помещается (электролит). И третий компонент, это пластина, на которую подается положительный заряд и она называется анодом. Изделие в свою очередь выступает в роли катода и на него подают отрицательный заряд. При подключении такой системы к источнику питания металл из которого состоит анод растворяется в электролите, а на изделие наносится металл, растворенный в электролите. Электролит выступает в роли переносчика металла с анода на наше изделие. Размеры ванн, куда налит электролит, могут быть самыми разными, объемом от долей литра до десятков тонн. Сами размеры и форма ванн диктуются размерами изделий, для покрытия которых они предназначены. В ваннах кроют изделия, которые можно завесить на подвески. Через них на изделие будет подводиться минус от источника питания, и они будут удерживать изделие на весу в объеме электролита.

Читайте так же:
Демпфирование стрелочного микроамперметра схема

Если изделия совсем мелкие и их много, прибегают к помощи немного видоизмененных ванн, которые называются барабанами. В барабанах покрывают сразу несколько изделий, и контакт с минусом источника питания обеспечивается за счет их взаимного соприкосновения. В барабанах изделия одновременно с нанесением покрытия еще и галтуются. Сам барабан с изделиями вращается в ванне с электролитом, в которой также находится анод.

Аналогично устроены и колокольные ванны наливного типа. В них засыпаются и изделия, заливается электролит и туда же вставляется анод. Они приводятся в медленное вращение и детали, пересыпаясь в электролите, медленно наращивают покрытие.

Все эти три метода обеспечивают полное покрытие изделий со всех сторон. Но есть еще один метод нанесения покрытия методом гальваники, и называется он трибогальваникой, стилогальваникой, нанесением «внатирку» и т.д. Смысл его в том, что на изделие как обычно подают минус источника питания, на анод плюс, но вся эта система не погружается в электролит. Электролитом лишь пропитывается тряпка или тампон, намотанный на анод. Анодом, который держат в руке под напряжением, как бы натирают изделие, и через некоторое время на изделии появляется покрытие. Электролиты для такого метода нанесения очень часто называют гелями. Это просто загущенные электролиты для того чтобы они поменьше стекали с тампона по изделию. С помощью этого метода можно покрывать крупные изделия, правда, очень долго, но зато наносить покрытие не на все изделие, а лишь на требуемые участки поверхности. Минусом такого метода является сильный разброс в толщине наносимого покрытия и оно, как правило, получается очень тонким. Такое покрытие резко уступает по качеству покрытиям, нанесенным в ваннах, хуже держится, неоднородно по цвету.

Отдельно, но очень близко к гальваническим, стоят методы химического и иммерсионногого нанесения металлических покрытий. В электролитах для протекания восстановления атомов металла на поверхности изделия необходимо протекание электрического тока. При химическом нанесении создается система, в которую вводится восстановитель. Именно он, окисляясь, восстанавливает металл покрытия на поверхности изделия. Это так называемая автокаталитическая реакция, которая идет только на поверхности металлического катализатора. А катализатором служит именно тот же металл, который и наносится. Происходит это вкратце так: приготовляется раствор (иногда нагревается), туда опускается подготовленное активированное изделие и происходит нанесение. Однако запустить такую реакцию не всегда просто, иногда она сама запускается на более активных металлах, а иногда её надо запускать принудительно, с помощью катализатора, например наночастиц палладия. И вот тут самое главное! Таким образом, можно покрывать не только металлические детали из различных сплавов, но и не проводящие материалы, например пластики. Иммерсионный метод в отличие от химического идет в виде обменной реакции на поверхности металлического изделия. Раствор для например, иммерсионного золочения растравливает металл на поверхности изделия и взамен укладывает золото. Это просто обменная реакция. Она идет до тех пор, пока на поверхности не останется только золото и не будет более оголенного, иного металла основы.

Читайте так же:
Как подключить розетку лампочку и выключатель одновременно

Именно на химических процессах нанесения металлов базируется технология металлизации непроводников, пластмасс, тканей, и т.д. По такой реакции создается токопроводный слой, а уже на него обычными гальваническими методами наносятся все остальные покрытия, включая финишное.

Все остальные методы нанесения металлических покрытий, такие как вакуумное и плазменное напыление не являются гальваническими методами.

Гальваническое покрытие: назначение, виды, нанесение

Гальваническое покрытие: назначение, виды, нанесение

Гальванизация – это электрохимический процесс, где участвует электролит, электрический ток, два электрода и обрабатываемая деталь. При этом металлический слой не просто наносится на поверхность, а проникает на молекулярном уровне в основание детали.

Для гальванизации необходимо, чтобы обрабатываемое изделие было идеально чистым. Для очистки и обезжиривания поверхностей можно использовать специальные органические растворители, которые не приведут к образованию коррозии.

Очиститель металла MODENGY

Например, для этих целей подойдет очиститель металла MODENGY. Он хорошо удаляет разнородные загрязнения, такие как нефтепродукты, силиконовые, минеральные, синтетические масла, консервационные составы, адсорбированные пленки газов, влагу и т.д. Средство быстро испаряется и не оставляет следов.

В большинстве случаев для подготовки поверхности к гальванизации достаточно очистить и обезжирить поверхности. Можно также выполнить пескоструйную обработку и последующую шлифовку с применением специальных паст и наждачной бумаги.

Рассмотрим сам процесс гальванизации. Подготовленное изделие погружается в раствор электролита и на него подается отрицательный заряд, который превращает деталь в катод. В электролите также находится специальная пластина из металла, который в дальнейшем и станет покрытием. Она является анодом. При подаче электричества металл с анода растворяется в растворе и переносится на отрицательно заряженный катод, в роли которого выступает обрабатываемая деталь. Таким образом на поверхностях образуется равномерный тонкий слой гальванического покрытия.

Данный метод гальванизации называется анодным. Благодаря ему при образовании коррозии в первую очередь разрушается само покрытие, а металл под ним в течение длительно времени сохраняет целостность.

Существует и другой способ – катодное напыление. Он используется гораздо реже, так как при нарушении защитного слоя разрушение металла под ним происходит более интенсивно, что обусловлено самой технологией нанесения.

Аноды для гальванизации

Средой для перемещения металла с анода на катод выступает электролит. Он находится в специальных емкостях, объем которых зависит от производственных задач.

Крупногабаритные изделия подвешиваются в объемных ваннах. Небольшие детали покрываются в барабанных емкостях, где отрицательный заряд имеет сам барабан, который вращается в электролите. Для покрытия очень мелких изделий используются наливные ванны колокольного типа, которые при работе медленно вращаются, благодаря чему детали равномерно покрываются защитным слоем.

Большое значение играет плотность тока, проходящего через электролит. Она влияет на структуру формируемого слоя. Данная величина измеряется как отношение силы тока к единице поверхности обрабатываемой детали.

Если плотность тока слишком низкая, осадок вообще не образуется, а при слишком большой количество отложений превысит допустимую норму, что отрицательно скажется на качестве покрытия. Именно поэтому при осуществлении гальванизации следует постоянно контролировать данную величину.

Толщина готового гальванического покрытия может варьироваться от 6 до 20 микрон. Она зависит от особенностей материалов, которые участвуют в процессе нанесения. Адгезия металлического покрытия с основанием детали определяется при помощи специальных тестов.

Читайте так же:
Как правильно резать половую плитку

Для проведения гальванизации очень важно помнить о совместимости материалов. Все металлы в соединениях корродируют. В некоторых случаях этот процесс протекает с низкой скоростью. Но существуют материалы, которые нельзя соединять вместе.

Например, при работе с алюминием и его сплавами достаточно сложно работать, так как их поверхность покрыта окисной пленкой, затрудняющей нанесение гальванического покрытия.

Для гальванизации алюминия можно использовать следующие сочетания материалов:

Способы нанесения гальванических покрытий

Способы нанесения гальванических покрытий

Гальваника — это технологический процесс получения металлических покрытий путем осаждения требуемого элемента на поверхность детали из раствора солей.

Гальванические покрытия могут быть получены химическим и электрохимическим способом. Электрохимическим называется способ получения металлического неорганического покрытия в электролите под действием электрического тока от внешнего источника. Химическим называется способ получения металлического неорганического покрытия в растворе солей без наложения на него электрического тока.

Электрохимический процесс

Электрохимический процесс, протекающий на электродах при прохождении через электролит электрического тока, называется электролизом. Устройства, в которых за счет внешней электрической энергии совершаются химические превращения веществ, называются электролизерами или электролитическими (гальваническими) ваннами 1 (рис. 5.1). При гальваническом покрытии деталей в качестве электролита 2 применяют обычно раствор соли осаждаемого металла (в электролит вводят также некоторые компоненты, улучшающие свойства покрытий и увеличивающие электрическую проводимость электролита и т.д.). Анодами 3 служат пластины из осаждаемого металла, а катодами 4 — предварительно очищенные и подготовленные детали, подлежащие покрытию.

Процесс электролиза состоит из следующих этапов:

  • получение в электролите ионов осаждаемого металла;
  • перенос полученных ионов к детали-катоду;
  • переход ионов металла в атомарное состояние;
  • осаждение атомов на поверхности детали;
  • формирование кристаллической решетки.

Схема стационарной гальванической ванны

Рис. 5.1. Схема стационарной гальванической ванны:
1 — ванна; 2 — электролит; 3 — аноды; 4 — деталь.

Электролиз может проводиться с применением растворимых и нерастворимых анодов. В случае проведения электролиза с растворимым анодом, изготовленным из осаждаемого на поверхности детали металла, он постепенно растворяется в электролите, образуя новые ионы металла взамен выделившихся на катоде, тем самым поддерживая требуемую концентрацию металла в растворе. В тех случаях, когда происходит нанесение покрытия на внутреннюю поверхность цилиндрических деталей малого диаметра и большой длины, допускается применение нерастворимых анодов. Нерастворимые аноды изготавливаются из металла или сплава, который в данном электролите не растворяется (чаще всего используется свинец), или из графита. При осаждении металлов из цианистых электролитов в качестве нерастворимых анодов используют стальные аноды, а в кислых — освинцованную проволоку. На нерастворимых анодах при электролизе обычно выделяется кислород.

Выбор электролитов

Режим электролиза при заданном составе электролита характеризуется тремя основными показателями:

  • кислотностью электролита, выраженной в граммах на литр, или в единицах рН;
  • температурой электролита;
  • катодной плотностью тока в амперах на квадратный дециметр.

В зависимости от кислотности электролиты можно разделить на две группы: щелочные и кислые электролиты. По составу входящих в них соединений электролиты бывают простые и сложные, в состав которых входят комплексные соединения.

Качество гальванических покрытий определяется их внешним видом, прочностью сцепления с основным металлом, толщиной и пористостью. Допускается наличие рисок, царапин, отдельных шероховатостей и несквозных пор, легко устраняемых при последующем полировании. Допустимыми дефектами являются также высохшие подтеки воды и разные оттенки.

Читайте так же:
Как замешивать бетон в бетономешалке пропорции

Виды ванн

В зависимости от размеров детали конструкция гальванической ванны существенно различается. Нанесение гальванических покрытий может проводиться:

  • в стационарных емкостях с вращением детали и без него;
  • в струйных ваннах;
  • в переносных ваннах;
  • электролизом во внутренних полостях деталей без использования гальванической ванны;
  • в барабанах и колоколах.

Установка для покрытия наружной поверхности цилиндрических деталей

Рис. 5.2. Установка для покрытия наружной поверхности цилиндрических деталей:
1 — катодная шина со скользящим контактом; 2 — покрываемая деталь; 3 — цилиндрический корпус гальванической ванны; 4 — цилиндрический анод; 5 — подпятник из пластмассы; 6 — станина; 7 — электродвигатель с редуктором.

Процесс получения гальванических покрытий в стационарных емкостях представлен выше (см. рис. 5.1). Вращение детали вокруг своей оси в течение всего времени осаждения позволяет формировать более ровные по толщине гальванические покрытия. Вращение детали также применяют для покрытия наружной поверхности цилиндрических деталей. Как видно из рис. 5.2, деталь помещена вертикально в центре цилиндрического анода, установленного также в цилиндрической стационарной ванне, и получает вращение от электродвигателя с редуктором. Для питания током к детали подведен скользящий контакт. Вращение детали позволяет применять высокие плотности тока и поэтому покрытия получаются гладкими и равномерными.

Использование для нанесения покрытий струйных ванн повышает производительность процесса. Постоянная смена электролита, контактирующего с поверхностью детали, предотвращает его обеднение ионами осаждаемого металла. Возможность регулировки размеров ванны для струйного нанесения позволяет создавать гальванические покрытия на отдельных участках длинномерных деталей (рис. 5.3).

Применение переносных ванн целесообразно для создания местных покрытий на крупногабаритных деталях. В переносных ваннах деталь не погружают в электролит целиком, а наоборот, пристраивают ванну к тому участку детали, на котором необходимо сформировать гальваническое покрытие (рис. 5.4).

Схема установки для струйного нанесения покрытий

Рис. 5.3. Схема установки для струйного нанесения покрытий:
1 — анод; 2 — верхняя часть гальванической ванны; 3 — деталь; 4 — раздвижная кассета; 5 — нижняя часть гальванической ванны; 6 — электролит; 7 — подогреватель; 8 — насос.

Схема установки переносной ванны

Рис. 5.4. Схема установки переносной ванны:
1 — деталь; 2 — анод; 3 — электролит; 4 — гальваническая ванна; 5 — клеевой слой.

Создание гальванических покрытий на внутренних поверхностях в деталях, имеющих закрытые внутренние полости, может осуществляться без использования емкостей для электролита. Роль такой емкости выполняет сама деталь (рис. 5.5).

Монтаж внутренних электродов для создания покрытий на внутренних поверхностях трубчатых деталей

Рис. 5.5. Монтаж внутренних электродов для создания покрытий на внутренних поверхностях трубчатых деталей:
1 — анод; 2 — центрирующая втулка; 3 — деталь.

В центре наращиваемой детали помещают свинцовый анод, а деталь служит катодом. При монтаже внутренних анодов в трубчатых деталях диаметр анодов должен составлять от 0,3 до 0,5 внутреннего диаметра труб. Внутренние аноды должны быть строго центрированы по отношению к стенкам трубы, что достигается установкой центрирующих втулок из пластмассы. Если диаметр анода велик, то его изготовляют полым внутри, а для снижения его массы и увеличения активной поверхности сверлят ряд отверстий в стенках. Полые трубчатые аноды особенно удобны, когда электролит во время процесса необходимо нагревать или охлаждать. Часто через полые трубчатые аноды производят прокачивание электролита для улучшения или ускорения процесса. При большой длине труб или при использовании гибких проволочных анодов на них через равные промежутки длины надевают центрирующие изоляторы в форме равностороннего плоского треугольника с отверстием в центре для пропускания анода. В качестве материала для изолятора применяют листовой целлулоид, винипласт и прочие химические стойкие пластмассы.

Читайте так же:
Какое масло заливать в мотоблок зимой

При этом деталь устанавливают на резиновый лист рядом с емкостью для удаления в процессе нанесения покрытий промывающей и охлаждающей жидкости. Резиновый лист покрывают целлулоидом, так как резина может растворяться в горячем электролите.

Для массового осаждения покрытий на крепежных или мелких деталей используют ванны с вращающимися барабанами. Барабан изготовляют шестигранного сечения, из листового железа, с задвижной дверцей для загрузки и выгрузки деталей и с шестерней для вращения, закрепленной по оси на одном из торцов. Диаметр с барабана обычно принимают равным 500-600 мм при длине 600-800 мм. Частота вращения не выше 15-5 об/ч. Загрузка барабана составляет 40-50 кг деталей.

Гальванические защитные покрытия металла

Гальваническим покрытием принято называть способ нанесения одного металла на другой способом электролиза. Основная цель нанесения покрытий — придание основному материалу антикоррозийных свойств, износостойкости, дополнительной твёрдости, антифрикционных качеств, большей эстетичности.

Цинкование — одно из самых распространённых способов защиты стальных поверхностей: листовых металлов, крепёжных элементов, проволоки — от воздействия влаги. Часто после основного процесса цинкования поверхность дополнительно протравливают раствором азотной кислоты, а затем пассивируют — осветляют. Так способом оцинковки достигается не только большая стойкость материала, но и декоративный эффект.

Кадмирование применяется для чёрных металлов, если на изделие действуют растворы солей. Оно намного прочнее цинкования, однако, недостаточно устойчиво к воздействию соединений серы. Они содержатся в промышленных газах, некоторых пластиках, смазках и топливе. Пластичность покрытия обуславливает его эффективность при защите деталей, имеющих резьбу, от коррозии. Более подробно с технологией кадмирования можно ознакомиться здесь: http://adamant74.ru/uslugi/kadmirovanie.

Хромирование позволяет придать поверхности большую твёрдость и увеличить её декоративные качества. Покрытие обладает жаростойкостью, устойчивостью к воздействию трения. Недостатком может служить низкая устойчивость к ударным нагрузкам. Хромированная сталь не подвергается коррозии в воде и растворах кислот, однако, не скрывает а даже увеличивает дефекты поверхности.

Гальванические защитные покрытия металла

Омеднение используется с целью повышения электропроводности поверхности, или как промежуточное покрытие перед нанесением покрытия из хрома или никеля. Таким образом происходит более качественное сцепление слоёв. Дополнительное преимущество медного покрытия — предотвращение искрообразования.

Никелирование — наиболее распространённое сегодня покрытие, обладающее высокой стойкостью к коррозии. Никелевый слой устойчив к воздействию электролитов и защищает от воздействия агрессивных промышленных газов. Преимуществом служит и то, что никелирование подходит практически для всех металлов.

Декорирование или нанесение покрытия из серебра и золота позволяет надолго сохранить блеск ювелирных изделий, не даёт им темнеть, и к тому же заменяет процесс полировки.

Нанесения гальванических покрытий делится на три этапа. На первом — подготавливается поверхность, как правило, обезжириванием и промывкой. Затем наносится само покрытие методом погружения в специальные кислотоупорные гальванические ванны с водяным охлаждение. Процесс нанесения идёт при повышенных температурах, поэтому для улавливания испаряющихся газов ванны оборудуются системами вытяжной вентиляции. В комплектацию входят также устройства для перемешивания раствора и поддержания стабильной температуры. Третий этап — это финишная обработка поверхности после нанесения покрытия.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector