Hydratool.ru

Журнал "ГидраТул"
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Конденсаторы для асинхронных двигателей

Конденсаторы для асинхронных двигателей

Конденсаторы

В рубрике «Принадлежности» рассмотрим конденсаторы для однофазных асинхронных двигателей переменного тока. У трехфазных двигателей при подключении к сети питания возникает вращающееся магнитное поле, за счет которого и происходит запуск двигателя. В отличие от трехфазных двигателей, у однофазных в статоре имеется две обмотки рабочая и пусковая. Рабочая обмотка подключена к однофазной сети питания напрямую, а пусковая последовательно с конденсатором. Конденсатор необходим для создания сдвига фаз между токами рабочей и пусковой обмоток. Самый большой вращающий момент в двигателе возникает тогда, когда сдвиг фаз токов обмоток достигает 90°, а их амплитуды создают круговое вращающееся поле. Конденсатор является элементом электрической цепи и предназначен для использования его ёмкости. Он состоит из двух электродов или правильней обкладок, которые разделёны диэлектриком. Конденсаторы имеют возможность накапливать электрическую энергию. В Международной системе единиц СИ за единицу ёмкости принимается ёмкость конденсатора, у которого на один вольт возрастает разность потенциалов при сообщении ему заряда в один кулон (Кл). Емкость конденсаторов измеряется в фарадах (Ф). Емкость в одну фараду очень большая. На практике используются более мелкие единицы измерения микрофарады (мкФ) одна мкФ равняется 10 -6 Ф, пикофарады (пФ) одна пФ равняется 10 -12 мкФ. В однофазных асинхронных двигателях в зависимости от мощности используются конденсаторы емкостью от нескольких до сотен мкФ.

Основные электрические параметры и характеристики

К основным электрическим параметрам конденсаторов для асинхронных двигателей относятся: номинальная емкость конденсатора и номинальное рабочее напряжение. Кроме этих параметров существует еще температурный коэффициент емкости (ТКЕ), тангенс угла потерь (tgd), электрическое сопротивление изоляции.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрический заряд характеризуется его емкостью. Емкость (С) определяется как отношение накопленного в конденсаторе заряда (q), к разности потенциалов на его электродах или приложенному напряжению (U). Емкость конденсаторов зависит от размеров и формы электродов, их расположения друг относительно друга, а также материала диэлектрика который разделяет электроды. Чем емкость конденсатора больше, тем и накопленный им заряд больше Удельная ёмкость конденсатора – выражает отношение его ёмкости к объёму. Номинальная ёмкость конденсатора – это ёмкость, которую имеет конденсатор согласно нормативной документации. Фактическая же ёмкость каждого отдельного конденсатора отличается от номинальной, но она должна быть в пределах допускаемых отклонений. Значения номинальной ёмкости и ее допустимое отклонение в различных типах конденсаторов постоянной ёмкости установлена стандартом.

Номинальное напряжение – это то значение напряжения обозначенное на конденсаторе, при котором он работает в заданных условиях длительное время и при этом сохраняет свои параметры в допустимых пределах. Значение номинального напряжения зависит от свойств используемых материалов и конструкции конденсаторов. В процессе эксплуатации рабочее напряжение на конденсаторе не должно превышать номинальное. У многих типов конденсаторов при увеличении температуры допустимое номинальное напряжение снижается.

Температурный коэффициент емкости (ТКЕ) – это параметр выражающий линейную зависимостью емкости конденсатора от температуры внешней среды. На практике ТКЕ определятся как относительное изменение емкости при изменении температуры на 1°С. Если эта зависимость нелинейная, то ТКЕ конденсатора характеризуется относительным изменением емкости при переходе от нормальной температуры (20±5°С) к допустимому значению рабочей температуры. Для конденсаторов используемых в однофазных двигателях этот параметр важный и должен быть как можно меньше. Ведь в процессе эксплуатации двигателя его температура повышается, а конденсатор находится непосредственно на двигателе в конденсаторной коробке.

Читайте так же:
Выключатель для болгарки интерскол

Тангенс угла потерь (tgd). Потеря накопленной энергии в конденсаторе обусловлена потерями в диэлектрике и его обкладках. Когда через конденсатор протекает переменный ток, то векторы тока и напряжения сдвинуты относительно друг друга на угол (d). Этот угол (d) и называют углом диэлектрических потерь. Если потери отсутствуют, то d=0. Тангенс угла потерь это отношение активной мощности (Pа) к реактивной (Pр) при напряжении синусоидальной формы определённой частоты.

Электрическое сопротивление изоляции – электрическое сопротивление постоянному току, определяется как отношение приложенного к конденсатору напряжения (U) , к току утечки (I ут ), или проводимости. Качество применяемого диэлектрика и характеризует сопротивление изоляции. Для конденсатора с большой емкостью сопротивление изоляции обратно пропорционально его площади обкладок, или его ёмкости.

На конденсаторы оказывает очень сильное воздействие влага. Асинхронные электродвигатели используемые в насосном оборудовании перекачивают воду, и высока вероятность попадания влаги на двигатель и в конденсаторную коробку. Воздействие влаги приводит к снижению сопротивления изоляции (возрастает вероятность пробоя), увеличению тангенса угла потерь, коррозии металлических элементов конденсатора.

Кроме всего при эксплуатации двигателя на конденсаторы воздействует различного вида механические нагрузки: вибрация, удары, ускорение и т.д. Как следствие могут появится обрыв выводов, трещины и уменьшение электрической прочности.

Рабочий и пусковой конденсаторы

В качестве рабочих и пусковых используются конденсаторы с оксидным диэлектриком (ранее они назвались электролитическими) Рабочие и пусковые конденсаторы для асинхронных двигателей включаются в сеть переменного тока, и они должны быть неполярными. Они имеют сравнительно большое 450 вольт для оксидных конденсаторов рабочее напряжение, которое в два раза превышает напряжение промышленной сети. На практике применяются конденсаторы с емкостью порядка десятков и сотен микрофарад. Как мы говорили выше, рабочий конденсатор используется для получения вращающего магнитного поля. Пусковая же емкость используется для получения магнитного поля, необходимого для повышения пускового момента электродвигателя. Пусковой конденсатор подключается параллельно рабочему через центробежный выключатель. Когда есть пусковая емкость вращающееся магнитное поле асинхронного двигателя в момент пуска приближается к круговому, а магнитный поток увеличивается. Это повышает пусковой момент и улучшает характеристики двигателя. При достижении асинхронным двигателем оборотов достаточных для отключения центробежного выключателя, пусковая емкость отключается и двигатель остается в работе только с рабочим конденсатором. Схема включения рабочего и пускового конденсаторов приведены на (Рис. 1).

Схема с рабочим и пусковоым конденсаторами

Схема с рабочим и пусковым конденсаторами

В таблице приведены обособленные характеристики рабочих и пусковых конденсаторов для асинхронных двигателей .

Эксплуатация, обслуживание и ремонт

В процессе эксплуатации насосного оборудования с однофазным асинхронным двигателем особое внимание следует обращать на питающее напряжение электрической сети. В случае пониженного напряжения сети, как известно, снижается пусковой момент и частота вращения ротора, из-за увеличения скольжения. При низком напряжении увеличивается также нагрузка на рабочий конденсатор и возрастает время запуска двигателя. В случае значительного провала напряжения питания более 15% высока вероятность того, что асинхронный двигатель не запустится. Очень часто при низком напряжении выходит из строя рабочий конденсатор из-за повышенных токов и перегрева. Он расплавляется и из него вытекает электролит. Для ремонта необходимо приобрести и установить новый конденсатор соответствующей емкости. Очень часто случается, что нужного конденсатора под рукой нет. В этом случае можно подобрать требуемую емкость из двух или даже трех и четырех конденсаторов, подключив их параллельно. Здесь следует обратить внимание на рабочее напряжение, оно должно быть не ниже, чем напряжение на заводском конденсаторе. Общая емкость конденсатора(ов) должна отличаться от номинала не более чем 5%. Если установить емкость большего номинала, то двигатель запустится в работу и будет работать, но при этом начнет греться. Если с помощью клещей измерить номинальный ток двигателя, то ток будет завышен. Так как полное электрическое сопротивление цепи в обмотках двигателя состоит из активного сопротивления цепи и реактивного сопротивления обмоток двигателя и емкости, то с увеличением емкости общее сопротивление возрастает. Сдвиг фаз токов в обмотках из-за увеличения полного сопротивления электрической цепи обмоток после запуска двигателя сильно уменьшится, магнитное поле из синусоидального превратится в эллиптическое, и рабочие характеристики асинхронного двигателя очень сильно ухудшаются, снижается КПД и возрастают тепловые потери.

Читайте так же:
Как высчитать плотность материала

Иногда бывает, что вместе с конденсатором выходит из строя и пусковая обмотка однофазного двигателя. В такой ситуации стоимость ремонта резко возрастает, ибо надо не только заменить конденсатор, но еще и перемотать статор. Как известно, перемотка статора одна из самых дорогих операций при ремонте двигателя. Очень редко, но бывает и такая ситуация когда при низком напряжении выходит из строя только пусковая обмотка, а конденсатор при этом остается рабочим. Для ремонта двигателя нужно перематывать статор. Все эти ситуации с двигателем случаются при низком напряжении однофазной питающей сети. Для решения этой проблемы в идеальном случае необходим стабилизатор напряжения.

Как выбрать конденсатор для электродвигателя: основные моменты

Конструктор должен знать, что для разгона мощного электродвигателя в первый момент требуется большая емкость конденсатора. По мере набора оборотов, она должна уменьшаться. Т.е. номинал пускового конденсатора должен быть больше рабочего.

Важно! Нельзя использовать электролитические конденсаторы как рабочие. Для этих целей применяют неполярные емкости на рабочее напряжение, превышающее сетевое в 1,5-2 раза. Для этих целей применяют старые советские типа МБГЧ, МГБО и т.п. или специально сконструированные пленочные комплектующие типа СВВ с металлическим напылением.

Существуют специальные емкости, в корпусе которых совмещены два конденсатора – пусковой и рабочий, как показано на фото:

Совмещенные конденсаторы

Они имеют два конденсатора разного номинала, конструктивно размещенные в одном корпусе.

Для чего предназначены конденсаторы

В трехфазной сети переменного тока фазы смещены относительно друг друга на 120 0 . Что позволяет создать вращающийся электромагнитный поток внутри двигателя.

При подключении к однофазной сети вращающийся поток отсутствует. Для его создания применяют фазосдвигающую емкость. Она позволяет создать вращающийся поток электрического поля.

Подбор конденсатора для асинхронного двигателя

Для подключения асинхронного трехфазного двигателя 380 вольт к однофазной сети необходим конденсатор. Электродвигатель имеет два вида соединения обмоток – звездой или треугольником. Соединение треугольником будет эффективнее работать в сети 220 вольт.

Для расчета конденсатора существуют специальные программы. Достаточно ввести данные двигателя и программа сама произведет расчет. Она выдаст рекомендации для подключения рабочего конденсатора и пускового. Таких программ в интернете существует множество. Они получили название калькулятор.

Существует формула, согласно которой производят расчет:

По вышеприведенной схеме рассчитывается рабочая емкость конденсатора, где в формуле:

  • U – Напряжение питающей сети. В нашем случае это 220 вольт.
  • Iф – номинальный ток статора. Можно посмотреть на шильдике электродвигателя, или замерить токоизмерительными клещами.
  • К – коэффициент, который зависит от схемы соединения обмоток. Для соединения треугольником он равен 4800, а для соединения звездой 2800.
Читайте так же:
Звезда треугольник схема соединения

Если все параметры известны, то правильно рассчитать конденсатор несложно. Результат получаем в мкФ. Эта формула справедлива для выбора рабочей емкости.

Сложнее обстоит дело с пусковым конденсатором. Он подключается к обмоткам на небольшое время. Не более 3 сек в момент запуска двигателя.

Как показано подключение двигателя 380 на 220 Вольт на рисунке снизу:

Схема подключения двигателя

Подбирают пусковую емкость исходя из условий, что она должна превышать рабочую в 2 -3 раза. Однако есть более простой способ подбора.

В интернете существуют таблицы, согласно которым можно определить необходимую емкость. На рисунке снизу представлена такая таблица. В ней указывают рабочий и пусковой конденсатор.

Таблица выбора емкости конденсатора

Таблица выбора емкости конденсатора

Существуют рекомендации, согласно которых легко определить необходимый параметр. На каждые 100 Вт устанавливают емкость, равною 7 мкФ. Пусковая будет составлять 14 мкФ. Рабочее напряжение конденсаторов должно быть не менее 1,5 U сети.

Подбор конденсатора для однофазного двигателя

Наибольшее распространение в быту получили однофазные электродвигатели с пусковой обмоткой. Они устанавливаются в большинстве бытовых приборах. Отсюда их распространение.

Они имеют две обмотки – рабочую и пусковую. Если в трехфазном двигателе конструкцией предусмотрен вращающийся поток, то в однофазном для этого применяется пусковая обмотка, а смещение фазы задается конденсатором. В некоторых схемах вместо емкости применяют резистор или индуктивность, но это скорее исключение.

Наиболее распространенная схема представлена ниже:

Схема подключения конденсатора

Для лучших пусковых характеристик применяется дополнительный конденсатор, подключенный параллельно рабочему. Его подключают кратковременно, не более трех секунд.

Применение электролитических конденсатора в сети переменного тока недопустимо. Т.к. включение полярного конденсатора в сеть переменного тока приводит к закипанию электролита внутри корпуса, что в конечном результате приведет к его взрыву.

Редко применяют схему с электролитическим, но при этом последовательно ему ставят диод. Такая схема оправдана, если необходимо сэкономить место, а двигатель работает кратковременно.

Выбор конденсатора для двигателя производят согласно схеме подключения:

  • Пусковая обмотка, и конденсатор подключаются кратковременно на время запуска. В этом случае на каждый 1 кВт мощности устанавливают 70 мкФ. Можно использовать электролитические с диодом.
  • Пусковая катушка и конденсатор постоянно подключены на все время работы мотора. В этом случае используют не полярные детали емкостью 23-35 мкФ на 1 кВт.
  • Параллельно рабочему конденсатору подключают кратковременно пусковой. В этом случае в качестве пусковой можно применить электролитическую емкость с диодом. Она должна быть в 2-3 раза больше рабочей. Однако, схема должна быть построена таким образом, чтобы пусковой кондер был подключен не более 3 секунд.

Несмотря на рекомендации по подбору, следует контролировать состояние электродвигателя.

Если мотор в процессе работы греется, стоит уменьшить номинал рабочего конденсатора. Если этого не сделать, двигатель перегреется и выйдет из строя.

Устанавливая электродвигатели на другое оборудование, применяйте родные детали, демонтированные вместе с ним с бытовой техникой, например, от стиральной машины. Если это невозможно, придерживайтесь изложенной рекомендации.

Двигатели постоянного тока

Конструктору попадаются маломощные двигатели постоянного тока. Обычно используются на напряжение 12 Вольт. На их корпусе смонтированы небольшие конденсаторы. Пример на фото:

Читайте так же:
Как подключить тепловое реле к двигателю

Двигатель на 12В с конденсатором

Двигатель на 12В с конденсатором

Возникает вопрос, для чего они предназначены, если без него моторчик работает. Из схемы видно, что он подключается параллельно двигателю.

  • Защиту сети от высокочастотной составляющей, наводящей помехи на радиоаппаратуру.
  • Выполняет функцию искрогасящего элемента. Он обеспечивает нормальный режим работы, и не позволяет пригорать щеткам к коллектору. Без него коллектор двигателя постоянного тока быстро выйдет из строя. Таким образом, продлевается срок службы коллектора и щеток.

Мы рассмотрели основные нюансы выбора конденсатора для электродвигателя и рассказали, для чего вообще нужен конденсатор в схеме. Надеемся, предоставленная информация была для Вас полезной и интересной!

Трёхфазный двигатель — в однофазную сеть

Статьи

Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения

380 в – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены «треугольником» (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть

Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.

На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже – вместо клеммных колодок, в коробке может располагаться два разделённых пучка проводов (по три в каждом).

Схемы подключения обмоток трёхфазных электродвигателей

Эти пучки проводов представляют собой «начала» и «концы» обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме «треугольник» – последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).

При включении трёхфазного электродвигателя в однофазную сеть, в схему «треугольник» добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.

В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку «ПУСК», применяемую в цепях управления магнитных пускателей.

Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее — напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.

Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при «разгоне» двигателя.

Схема подключения трёхфазного двигателя в однофазную сеть

Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.

Рассчитать ёмкость рабочего конденсатора можно формулой:

Трёхфазный двигатель - в однофазную сеть

  • С раб = 4800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток «треугольник».
  • С раб = 2800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток «звезда».

Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:

С раб = 66·Р ном, мкФ, где Р ном — номинальная мощность двигателя.

Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.

Читайте так же:
Виды рубанков и их назначение и фото

Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.

Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового — она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические — типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

Расчет конденсаторов для работы трехфазного асинхронного двигателя в однофазном режиме

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Схемы подключения обмоток двигателя с конденсаторным пуском

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Технические данные некоторых конденсаторов

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

R = 0.86*U/kappa*I,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector