Hydratool.ru

Журнал "ГидраТул"
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Аргон. Аспекты его применения в сварочном процессе технического газа аргона

Аргон. Аспекты его применения в сварочном процессе технического газа аргона

Аргон – это инертный газ с одноатомной структурой, который имеет температуру кипения в условиях нормального давления ниже, чем у кислорода. Средняя температура кипения аргона составляет около ста восьмидесяти градусов по Цельсию. Аргон достаточно хорошо растворяется в воде, но лучше для этих целей использовать органические растворители.

Производство аргона не составляет особого труда и не требует значительных затрат. Он в большом количестве содержится в земной атмосфере. При этом следует учитывать, что в процессе использования аргон не претерпевает совершенно никаких структурных и химических изменений. Он возвращается в атмосферу в своем первоначальном виде. В настоящее время учеными открыты только два соединения, в которых участвует аргон. Оба эти соединения могут образовываться только под воздействием критически низких температур.

Технический газ аргон получают в качестве побочного продукта производственного процесса, в ходе которого кислород отделяют от азота. Для этого применяются специальные камеры с использованием воздухоразделительных аппаратов с двукратной ректификацией. Аргон обладает большими летучими свойствами, чем кислород, и меньшими, чем азот. Поэтому в процессе разделения воздуха на кислород и азот аргон остается в средней фракции. Из средней точки верхней колонны аппарата аргон направляют в специальные камеры для сжатия и хранения.

При первичном отборе массовая доля аргона в отобранной фракции составляет ничтожно малые показатели, всего около пяти процентов. Это так называемый сырой аргон. После последующей конденсации и очистки удается получить чистый аргон с массовой долей содержания его во фракции около 99,99 процентов. Практикуется так же способ извлечения аргона в процессе утилизации отходов аммиачного производства. В этом случае аргон получают из азота, оставшегося после связывания его с молекулами водорода.

Транспортировка и хранение аргона допускается только в специализированных емкостях, газовых баллонах. В большинстве случаев для этого применяются сорокалитровые газовые баллоны. Баллоны с аргоном окрашиваются в серый цвет. Поперек баллона наносится зеленая полоса и надпись аналогичного цвета. Стандартное давление в баллонах с аргоном составляет сто пятьдесят атмосфер. В ряде случаев для снижения затрат на перевозку, аргон транспортируется в сжиженном состоянии. При этом его закачивают в специализированные ёмкости и сосуды Дюара. Также можно использовать и специализированные цистерны. Аргон не является взрывоопасным веществом. Меры предосторожности при его транспортировке в основном сводятся к тому, чтобы обеспечить сохранность самого технического газа, так как он обладает большой летучестью.

Технический газ аргон широко используется в самых разнообразных сферах производства. Наибольшее применение он нашел в производстве металлов и их обработке. В металлургической промышленности аргон используется для получения высококачественных видов стали. Для этого аргон пропускают через расплавленную массу, предназначенную для проката стального листа. При этом аргон полностью освобождает сталь от присутствия в ней молекул кислорода, водорода и других газов, содержащихся в воздухе.

В сварочных процессах аргон применяется при сварке ответственных узлов и агрегатов, которые нуждаются в повышенной защите от коррозийных процессов. Есть также такие сплавы и металлы, которые без применения аргона не могут быть обработаны при помощи сварочных операций. В частности, такие металлы, как тантал, ниобий, цирконий, гафний, вольфрам, уран, торий, титан, не могут подвергаться обработке без дополнительной защиты их при помощи инертного газа аргона.

В настоящее время использование электрической дуги в аргонной среде дает колоссальные возможности для производства работ с самыми различными металлами и деталями из них. В частности, сварка в аргоне дает возможность нагрева металлических поверхностей до температуры выше шести градусов по Цельсию. Это дает уникальную возможность при помощи простейшего сварочного аппарата резать металлы самой различной толщины.

При сварке в аргоне не применяются различные флюсы и электродные покрытия. Сварочные швы после такой обработки получаются совершенно чистыми и ровными. Они не нуждаются в дополнительной обработке в виде зачистки от остатков сварочного материала и шлаков. В ходе работ струя аргона полностью удаляет не только воздух из места сварки, но и все остаточные продукты.

Применение технического газа аргона не требует специальных мер предосторожности. Этот газ обладает высокими экологическими свойствами. Это природный газ, который не претерпевает никаких технологических изменений. При этом аргон не отличается повышенной взрывоопасностью. Технология транспортировки и хранения газовых баллонов, наполненных аргоном, соответствует требованиям, применяемым для остальных технических газов.

Аргон, Argon

Аргон

История открытия аргона могла бы послужить основой для хорошего детектива. Сообщению об открытии нового газа поверили далеко не все химики. Усомнился в нем и сам Менделеев. Открытие аргона, казалось, могло привести к тому, что все «здание» периодической системы рухнет. Аргон не имел в таблице аналогов, ему вообще не находилось места в периодической системе: куда, скажите, можно поместить элемент, лишенный химических свойств?

Читайте так же:
Какие бывают линейки названия

Восемнадцатый элемент

Аргон относится к числу благородных газов, а история изобилует поистине драматичными моментами. В 1785 году английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось.

Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал Nature обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин.

Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот. Газ вел себя парадоксально: он не вступал в реакции с хлором, металлами, кислотами, щелочами, т.е. был абсолютно химически инертен. И еще одна неожиданность: Рамзай доказал, что молекула этого газа состоит из одного атома, — а до той поры одноатомные газы были неизвестны.

Когда Рэлей и Рамзай выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную — почти процент! Кстати, именно в этот день и час, 13 августа 1894 года, аргон и получил свое имя (от греч. «аргос» — «ленивый», «безразличный»).

Сообщению об открытии нового газа поверили далеко не все химики, усомнился в нем и сам Менделеев. Открытие аргона, казалось, могло привести к тому, что все «здание» периодической системы рухнет. Атомная масса газа (39,9) указывала ему место между калием (39,1) и кальцием (40,1). Но в этой части таблицы все клетки были давно заняты. Аргон не имел в таблице аналогов, ему вообще не находилось места в периодической системе.

Поэтому официальное признание аргон получил лишь четверть века спустя — после открытия гелия. Теперь уже двум элементам не было места в периодической системе. После длительных дискуссий Менделеев и Рамзай пришли к выводу, что инертным газам нужно отвести отдельную, так называемую нулевую группу между галогенами и щелочными металлами.

Химическая инертность аргона (как и других газов нулевой группы) и одноатомность его молекул объясняются прежде всего предельной насыщенностью электронных оболочек.

Из подгруппы тяжелых инертных газов аргон самый легкий. Он тяжелее воздуха в 1,38 раза. Жидкостью становится при -185,9°С, затвердевает при –189,4°С (в условиях нормального давления). Молекула аргона одноатомна.

В отличие от гелия и неона, он довольно хорошо адсорбируется на поверхностях твердых тел и растворяется в воде (3,29 см 3 в 100 г воды при 20°С). Еще лучше растворяется аргон во многих органических жидкостях. Зато он практически нерастворим в металлах и не диффундирует сквозь них.

Под действием электрического тока аргон ярко светится, и сегодня сине-голубое свечение аргона широко используется в светотехнике.

Биологи нашли, что аргон благоприятствует росту растений. Даже в атмосфере чистого аргона семена риса, кукурузы, огурцов и ржи выкинули ростки. Лук, морковь и салат хорошо прорастают в атмосфере, состоящей из 98% аргона и только 2% кислорода.

На Земле и во Вселенной

На Земле аргона намного больше, чем всех прочих элементов его группы, вместе взятых. Его среднее содержание в земной коре (кларк) — 0,04 г на тонну, что в 14 раз больше, чем гелия, и в 57 — чем неона. Есть аргон и в воде, до 0,3 см 3 в литре морской и до 0,55 см 3 в литре пресной воды. Любопытно, что в воздухе плавательного пузыря рыб аргона находится больше, чем в атмосферном воздухе. Это потому, что в воде аргон растворим лучше, чем азот.

Главное «хранилище» земного аргона — атмосфера. Его в ней (по весу) 1,286%, причем 99,6% атмосферного аргона — самый тяжелый изотоп — аргон-40. Еще больше доля этого изотопа в аргоне земной коры. Между тем у подавляющего большинства легких элементов картина обратная — преобладают легкие изотопы.

В материи Вселенной аргон представлен еще обильнее, чем на нашей планете. Особенно много его в веществе горячих звезд и планетарных туманностей. Подсчитано, что аргона в космосе больше, чем хлора, фосфора, кальция, калия — элементов, весьма распространенных на Земле.

Читайте так же:
Как сделать труборез своими руками видео

Как добывают аргон

Земная атмосфера содержит 66 • 1013 тонн аргона. Этот источник газа неисчерпаем. Тем более что практически весь аргон рано или поздно возвращается в атмосферу, поскольку при использовании он не претерпевает никаких физических или химических изменений. Исключение составляют весьма незначительные количества изотопов аргона, расходуемые на получение в ядерных реакциях новых элементов и изотопов.

Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Обычно используют воздухоразделительные аппараты двукратной ректификации, состоящие из нижней колонны высокого давления (предварительное разделение), верхней колонны низкого давления и промежуточного конденсатора-испарителя. В конечном счете азот отводится сверху, а кислород — из пространства над конденсатором.

Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну. Состав аргонной фракции: 10–12% аргона, до 0,5% азота, остальное — кислород. В «аргонной» колонне, присоединенной к основному аппарату, получают аргон с примесью 3—10% кислорода и 3-5% азота. Дальше следует очистка «сырого» аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией). В промышленных масштабах ныне получают аргон до 99,99%-ой чистоты. Аргон извлекают также из отходов аммиачного производства — из азота, оставшегося после того, как большую его часть связали водородом.

Нужный в хозяйстве «лентяй»

Как самый доступный и относительно дешевый инертный газ аргон стал продуктом массового производства, особенно в последние десятилетия.

Первоначально главным потребителем элемента №18 была электровакуумная техника. И сейчас подавляющее большинство ламп накаливания (миллиарды штук в год) заполняют смесью аргона (86%) и азота (14%). Переход с чистого азота на эту смесь повысил светоотдачу ламп. Поскольку в аргоне удачно сочетаются значительная плотность с малой теплопроводностью, металл нити накаливания испаряется в таких лампах медленнее, передача тепла от нити к колбе в них меньше. Используется аргон и в современных люминесцентных лампах для облегчения зажигания, лучшей передачи тока и предохранения катодов от разрушения.

Однако в последние десятилетия наибольшая часть получаемого аргона идет не в лампочки, а в металлургию, металлообработку и некоторые смежные с ними отрасли промышленности. В среде аргона ведут процессы, при которых нужно исключить контакт расплавленного металла с кислородом, азотом, углекислотой и влагой воздуха. Аргонная среда используется при горячей обработке титана, тантала, ниобия, бериллия, циркония, гафния, вольфрама, урана, тория, а также щелочных металлов. В атмосфере аргона обрабатывают плутоний, получают некоторые соединения хрома, титана, ванадия и других элементов (сильные восстановители).

Уже существуют металлургические цеха объемом в несколько тысяч кубометров с атмосферой, состоящей из аргона высокой чистоты. В этих цехах работают в изолирующих костюмах, а дышат подаваемым через шланги воздухом (выдыхаемый воздух отводится также через шланги); запасные дыхательные аппараты закреплены на спинах работающих.

Защитные функции выполняет аргон и при выращивании монокристаллов (полупроводников, сегнетоэлектриков), а также при производстве твердосплавных инструментов. Продувкой аргона через жидкую сталь из нее удаляют газовые включения. Это улучшает свойства металла.

Все шире применяется дуговая электросварка в среде аргона. В аргонной струе можно сваривать тонкостенные изделия и металлы, которые прежде считались трудносвариваемыми.

Не будет преувеличением сказать, что электрическая дуга в аргонной атмосфере внесла переворот в технику резки металлов. Процесс намного ускорился, появилась возможность резать толстые листы самых тугоплавких металлов. Продуваемый вдоль столба дуги аргон (в смеси с водородом) предохраняет кромки разреза и вольфрамовый электрод от образования окисных, нитридных и иных пленок. Одновременно он сжимает и концентрирует дугу на малой поверхности, отчего температура в зоне резки достигает 4000-6000°С. К тому же эта газовая струя выдувает продукты резки. При сварке в аргонной струе нет надобности во флюсах и электродных покрытиях, а стало быть, и в зачистке шва от шлака и остатков флюса.

Стремление использовать свойства и возможности сверхчистых материалов — одна из тенденций современной техники. Для сверхчистоты нужны инертные защитные среды, разумеется, тоже чистые; аргон — самый дешевый и доступный из благородных газов. Поэтому его производство и потребление росло, растет и будет расти.

Аргон — свойства, характеристики

В атмосфере содержится около 0,9% аргона. Аргон, который, как и азот, представляет собой нейтральный бесцветный газ, существует в природе только в составе атмосферного воздуха. Он не пригоден для поддержания жизни, однако незаменим в некоторых технологических процессах благодаря высокому уровню химической инертности и относительной простоте извлечения.

История открытия

Внешний вид простого вещества

Инертный газ без цвета, вкуса и запаха
Свойства атома
Имя, символ, номер
Атомная масса (молярная масса)39,948 а. е. м. (г/моль)
Электронная конфигурация[Ne] 3s 2 3p 6
Радиус атома71пм
Химические свойства
Ковалентный радиус106 пм
Радиус иона154 пм
Электроотрицательность4,3 (шкала Полинга)
Электродный потенциал
Степени окисления
Энергия ионизации (первый электрон)1519,6(15,75) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.)(при 186 °C) 1,40 г/см 3
Температура плавления83,8 K
Температура кипения87,3 K
Теплота испарения6,52 кДж/моль
Молярная теплоёмкость20,79 Дж/(K·моль)
Молярный объём24,2 см 3 /моль
Кристаллическая решётка простого вещества
Структура решёткикубическая гранецентрированая
Параметры решётки5,260 A
Температура Дебая85 K
Прочие характеристики
Теплопроводность(300 K) 0,0177 Вт/(м·К)

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется.

В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекращалось, но, после связывания оставшегося кислорода, оставался газовый пузырь, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г.). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота.

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос.

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы).

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней.

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа.

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество.

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества.

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов.

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %). Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон.

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии.

Основное применение

Пищевая отрасль

В контролируемой среде аргон может во многих процессах использоваться в качестве замены для азота. Высокая растворимость (в два раза превышающая растворимость азота) и определенные молекулярные характеристики обеспечивают его особые свойства при хранении овощей. При определенных условиях он способен замедлять метаболические реакции и значительно сокращать газообмен.

Производство стекла, цемента и извести

При использовании для заполнения ограждений с двойным глазурованием аргон обеспечивает превосходную тепловую изоляцию.

Металлургия

Аргон используется для предупреждения контакта и последующего взаимодействия между расплавленным металлом и окружающей атмосферой.

Использование аргона позволяет оптимизировать такие производственные процессы как перемешивание расплавленных веществ, продувка поддонов реакторов для предупреждения повторного окисления стали и обработка стали узкого применения в вакуумных дегазаторах, включая обезуглероживание, процессы и процессы открытого сжигания. Однако наибольшую популярность аргон приобрел в процессах обезуглероживания нерафинированной высокохромистой стали, позволяя минимизировать окисление хрома.

Лабораторные исследования и анализы

В чистом виде и в соединениях с другими газами аргон используется для проведения промышленных и медицинских анализов и испытаний в рамках контроля качества.

В частности аргон выполняет функцию газовой плазмы в эмиссионной спектрометрии плазмой (ICP), газовой подушки в спектроскопии в графитной печи (GFAAS) и в газовой хроматографии с использованием различных газоанализаторов.

В соединении с метаном аргон используется в счетчиках Гейгера и детекторах рентгеновского флуоресцентного анализа (XRF), где он выполняет функцию гасящего газа.

Сварка, резка и нанесение покрытия

Аргон используется в качестве защитной среды в процессах дуговой сварки, при поддуве защитного газа и при плазменной резке.

Аргон предупреждает окисление сварных швов и позволяет сократить объем дыма, сбрасываемого в процессе сварки.

Электроника

Сверхчистый аргон служит в качестве для химически активных молекул, а также в качестве инертного газа для защиты полупроводников от посторонних примесей (например, аргон обеспечивает необходимую среду для выращивания кристаллов силикона и германия).

В ионном состоянии аргон используется в процессах металлизации напылением, ионной имплантации, нормализации и травления при производстве полупроводников и высокоэффективном производстве материалов.

Автомобильная и транспортная отрасль

Затаренный герметизированный аргон служит для наполнения подушек безопасности в автомобилях.

Для чего же нужен аргон в стеклопакете?

Благодаря научным достижениям и высоким технологиям человечество получает возможность улучшить качество жизни! Для большего комфорта и тепла в вашем доме мы предлагаем окна с заполнением камер энергосберегающего стеклопакета инертным газом аргоном.

Наличие аргона в стеклопакете решает сразу несколько проблем:

  1. Защищает энергосберегающее покрытие от стопроцентного окисления (инертный газ собой вытесняет кислород, а тот в свою очередь не может разрушить напыление из металлического серебра).
  2. Повышение звукоизоляционных показателей (динамический модуль упругости аргона более высокий по сравнению с воздухом)
  3. Аргон повышает теплоизоляцию.

Как известно, теплопотеря через пластиковое окно идет тремя путями – радиация – пропуск инфракрасных лучей, диффузия – прямая теплопроводность и конвекция, за счет разности плотностей теплого и холодного воздуха, перенос ими тепла.
Первому пути теплопотери удачно противостоит стеклопакет, где есть стекло с низкоэмиссионным покрытием.
Путь теплопотери через диффузию целиком зависит от того какой теплопроводностью обладает газ – у инертного она намного ниже, чем у воздуха, поэтому выше теплоизоляция. Потеря тепла через конвекцию — зависит от газовой теплоёмкости и его вязкости.
Чем выше теплоёмкость, тем необходимо больше тепла нужно для нагревания определённого объема газа, и чтобы на один градус поднялась его температура, значит тем больше тепла за счёт конвекции он перенесёт, поэтому чем меньшая у газа теплоёмкость, тем стеклопакет будет "теплее" за счёт уменьшения переноса тепла.
Но необходимо кроме этого плотность газа учитывать.
Подвижность газа характеризуется его динамической вязкостью, поэтому чем она выше, тем конвекционные процессы происходят менее интенсивно, поэтому стеклопакет снова "теплее". Именно поэтому пластиковые окна заполняют инертным газом, а не оставляют просто с воздухом.

Существует мнение о том, что газ аргон выветривается и эффективность стеклопакета уменьшается. Однако для предотвращения утечки газа, на заводе «Русские Окна» используется двухступенчатая герметизация. Два барьера – первый – это специальный герметик, который размазан тонким слоем. Он связывает дистанционную рамку со стеклом. Далее идет пространство, которое ограничено кромкой стекла и поверхностью оконной дистанционной рамки – его под давлением по периметру заполняют двухсоставным герметиком, изготовленным на основе полиуретана.

Также вероятность быстрой утечки аргона из камеры стеклопакета зависит от способа закачки газа:

  1. В дистанционную рамку устанавливают пару специальных уголков со штенгелем (специальная трубочка, которую после обрезают и герметизируют). Далее собирается стеклопакет и к штенгелю присоединяют шланг, идущий от баллона, в котором находится аргон и камеру наполняют, в это время весь воздух из стеклопакета уходит через другой штенгель, который открыт. Затем его надлежащим образом подвергают обрезке, герметизации, торец стеклопакета обмазывают еще одним слоем для герметизации. Этот способ более дешевый и менее эффективный за счет дополнительных отверстий.
  2. Чтобы избежать нарушения герметичности стеклопакета и дальнейшей скорой утечки аргона используют более современный способ: стеклопакет собирается непосредственно в атмосфере аргона. Именно такой современный способ используется при изготовлении стеклопакетов в «Русских Окнах».

Таким образом, заказывая у нас окна вы получаете качественный, высокотехнологичный продукт с высокими показателями тепло- и шумоизоляции.

Защитный газ при сварке

Наиболее распространенным газом при сварке является аргон. В некоторых случаях используют гелий, однако аргон занимает почетное первое место в рейтинге использования защитных газов при аргонодуговом сваривании.

Аргон является инертным газом, который в обычных условиях не имеет цвета, запаха и вкуса. Он тяжелее воздуха приблизительно в 1,38 раза. Он считается наиболее доступным и сравнительно недорогим газом для защиты сварочного процесса.

В промышленности основным способом получения аргона является метод низкотемпературной ректификации воздуха с получением кислорода и азота, попутно извлекая аргон. Также аргон получается в качестве побочного эффекта при добыче аммиака. Газообразный аргон хранят в транспортируют в специальных стальных баллонах. Такие баллоны окрашены в серый цвет и на них нанесена надпись «Аргон чистый» зеленого цвета.

Аргон является не взрывоопасным и не токсичным газом, но при высокой концентрации в воздухе может быть опасным для жизни человека. Если доля кислорода в воздухе снижается до 19-и и ниже процентов, то появляется кислородная недостаточность, что вызывает удушье, а при продолжительном нахождении в такой атмосфере может вызвать потерю сознания и в некоторых случаях смерть.

Аргон используется в качестве инертного газа для защиты сварочного процесса при дуговой сварке. Он является основой защиты среды при сваривании алюминия, титана активных и редких металлов. Аргон нередко применяется при плазменной сварке как плазмообразующий газ. Иногда его используют при лазерной сварке как плазмоподавляющий и защитный газ.

В зависимости от требуемых объемов использования аргона применяются несколько схем обеспечения ним. Если объем при использовании не превышает 10 000 кубических метров на грамм, то его доставляют в баллонах. Если же объем превышает 10 000 кубических метров, то его перевозят в жидком состоянии в специально отведенных для этого емкостях. Для этого используется автомобильный и железнодорожный транспорт. Чтобы транспортировать аргон по железной дороге используются специальные цистерны 8Г-513 или же 15-558. Для перемещения по дорогам используются газовые емкости типа ЦТК объемом от 0,5 до 10 кубических метров. В таких же емкостях может транспортироваться азот и кислород.

Защитный газ аргон при выходе из сопла горелки попадает в зону сварки и вытесняет воздух из этой зоны. Сварочная проволока при сваривании подается роликами вниз, которые вращаются двигателем подающего механизма. Подвод сварочного тока к проволоке осуществляется с помощью скользящего контакта.

Если учитывать, что защитный газ активен и может вступать во взаимодействие с расплавленным металлом, то полуавтоматическое сваривание в углекислом газе имеет много преимуществ, что позволяет производить сварочные швы высокого качества при минимальных затратах, несмотря на то, что некоторые виды сварки, например сварка алюминия, не такие и простые.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector