Hydratool.ru

Журнал "ГидраТул"
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

MC34063A описание, схема подключения

MC34063A описание, схема подключения.

Импульсный регулятор напряжения MC34063A (полный российский аналог КР1156ЕУ5) — специально разработанная микросхема для DC-DC преобразователей с минимальным количеством внешних элементов. Микросхема MC34063A применяется в импульсных источниках питания со входным напряжением от 3 до 40В и выходным током до 1,5А:

повышающих (Step-up converter)

понижающих (Step-down converter)

инвертирующих (Voltage inverting converter).

На практике приходилось встречаться только с вариантами источников питания

повышающих – Феликс 02К, цепь формирования 24В из 12В

понижающих – практически все фискальные регистраторы работающие от 24В, принтеры этикеток и прочее оборудование, где входное напряжение питания больше 5 вольт. Поэтому будем рассматривать только первые два варианта использования микросхемы MC34063A.

Рекомендуемая литература.

  1. Datasheet MC34063A на английском (скачать).
  2. Описание работы КР1156ЕУ5 (аналог MC34063A) на русском (cкачать).
  3. И.Л. Кольцов «33 схемы на КР1156ЕУ5» (скачать).
  4. Документ AN920/D. В данном документе приведены формулы для расчета преобразователей DC-DC на базе микросхемы MC34063. Рассмотрен принцип работы. (скачать).

Общее описание.

Мощный электронный ключ на составном транзисторе (VT1 и VT2), который соединен со схемой управления. На нее поступают импульсы синхронизации от генератора, скважность которых зависит от сигнала схемы ограничения по току. Также на схему управления подается сигнал обратной связи с компаратора. Он производит сравнение напряжения обратной связи с напряжением внутреннего источника опорного напряжения. Стабильность параметров выходного напряжения микросхемы полностью обеспечивает источник опорного напряжения, т.к. его напряжение не зависит от изменений температуры окружающей среды и колебания входного напряжения.

Рис. Расположение выводов (pinout) MC34063A

Switch Collector (VT1) Коллектор выходного транзистора.

Switch Emitter (OUT) Эмиттер выходного транзистора.

Timing Capacitor (OSC) Вывод для подключения времязадающего конденсатора.

Ground (Gnd) Общий вывод.

Comparator Inverting Input (CMP) Вход компаратора — инвертирующий .

Vcc (Uin) Напряжение питания (3. 40В).

Ipk Sense (Rt) Вход схемы ограничения тока, сюда подключается токоограничивающий резистор. Ipk пиковый ток через индуктивность, где Ipk <1.5А.

Driver Collector (VT2) Коллектор предвыходного транзистора.

Схема подключения.

Микросхема МС34063A имеет два входа, которые можно использовать для стабилизации тока.

Один вход имеет пороговое напряжение 1.25В (5 нога), что для мощной нагрузки не выгодно из-за потерь мощности. Например, при токе 1000 мА имеем потери на резисторе-датчике тока величиной 1.25*1А=1.25Вт, что сопоставимо с потерями мощности на линейном стабилизаторе.

Второй вход микросхемы имеет пороговое напряжение 0.3В (7 нога), и предназначен для защиты встроенного транзистора от перегрузки по току.

Рис. Схема понижения (Step-down converter)

Рис. Схема повышения (Step-up converter)

С2— конденсатор задающий частоту преобразования.

VD1 – быстродействующий диод, практически вся схема зависит от быстродействия этого диода. При использовании диодов Шотки, диод должен выдерживать обратное напряжение вдвое превышающее выходное напряжение.

R1 – Токовый датчик, задает максимальный ток на выходе стабилизатора. При превышении максимального тока – микросхема отключится, фактически является защитой от короткого замыкания (перегрузки) на выходе. Обладает довольно большой рассеиваемой мощностью, от 0,5 Вт до 2Вт, на практике иногда выглядит в виде нескольких параллельно включенных резисторов.

Важное замечание! Опорное напряжение токового входа микросхемы 34063 различается у разных корпусов, с разбросами от 0,25В до 0,45В. . Стандартные расчеты принимаются для опорного напряжения 0,3В. Таким образом если напряжение на шунте станет выше чем 0.3 вольта, микросхема 34063 отключится. (Например резистор R1=1 Ом, тогда при достижении U=1 Ом*0,3А=0,3В сработает защита по току и микросхема отключится. На практике это означает, что при значении резистора R1=1 Ом выходной ток источника питания будет 0,3А).

R2, R3 — делитель напряжения, с помощью которого задается выходное напряжение.

Рис. Выходное напряжение, формула расчета.

Фильтр рассмотрим отдельно, так как именно фильтр является слабым звеном при эксплуатации.

L1 – накопительная и фильтрующая индуктивность. Данную индуктивность настоятельно не рекомендуется уменьшать, так же именно эта индуктивность задает выходной ток, поэтому толщина провода довольно критичный параметр. На практике такая схема фильтра довольно редкое явление, как правило ставится второй LC фильтр, индуктивности включаются встречно.

С3 – принцип такой же как у катушки индуктивности. Несмотря на расчеты, если нет ограничения по размерам, конденсатор на 470 мкФ увидеть здесь довольно редкое явление. А вот конденсатор на 1000 мкФ здесь общепринятый стандарт (рассматриваем схемы Uвх=24В, Uвых=5В). Конденсатор должен быть LOW ESR, однако на практике это довольно редкое явление, ставится обычный конденсатор. Хотя если поднять оборудование 2000-2002 г.в. то там можно встретить LOW ESR конденсаторы в фильтре. Некоторые производители ставят в параллель ВЧ конденсатор, однако это довольно спорное решение.

Конденсатор фильтра для понижающих (Step-down converter) источников питания не является обязательным элементом, при достаточно большой индуктивности фильтра.

33063Ap1 datasheet на русском

33063Ap1 datasheet на русском

Даташит поиск по электронным компонентам в формате pdf на русском языке. Бесплатная база содержит более 1 000 000 файлов доступных для скачивания. Воспользуйтесь приведенной ниже формой или ссылками для быстрого поиска (datasheet) по алфавиту.Если вы не нашли нужного Вам элемента, обратитесь к администрации проекта .

Читайте так же:
Как выставить момент затяжки на динамометрическом ключе

33063Ap1 datasheet на русском

Предлагаемое устройство предназначено для подключения в качестве дополнительного модуля к любому источнику с выходным напряжением 9…24 В постоянного тока и обеспечивает выходное постоянное напряжение 5 В при токе нагрузки до 0,5 А. Его удобно использовать в автомобиле, автобусе, яхте, катере или любом ином транспортном средстве с бортовой сетью 12 или 24 В.

Если в вашем распоряжении имеется относительно низковольтный источник напряжения постоянного тока, например аккумуляторная батарея, но по каким-то причинам вы не можете воспользоваться зарядным устройством с питанием от сети 220 В/50 Гц, то для стационарного питания мобильных устройств и пополнения заряда их встроенных литиевых аккумуляторных батарей можно воспользоваться несложным зарядным устройством.

Стабилизатор напряжения +5 В постоянного тока построен на известной интегральной микросхеме MC33063AVP. Функциональный состав этой микросхемы показан на рис.1.

33063Ap1 datasheet на русском

Использованная в конструкции ИМС выполнена в корпусе DIP-8, более эффективно отводящем тепло, чем вариант исполнения этой микросхемы в корпусе SO-8, который предназначен для поверхностного монтажа. Микросхема работоспособна при входном напряжении до 40 В. Максимальный импульсный ток составного выходного интегрального транзистора до 1,5 А.

Принципиальная схема устройства показана на рис.2. Напряжение питания 9…24 В через фильтр C1L1C2, полимерный самовосстанавливающийся предохранитель FU1 и защитный диод Шоттки VD1 поступает на вход микросхемы импульсного стабилизатора напряжения DA1. Конденсаторы С4-С6 сглаживают пульсации входного напряжения.

33063Ap1 datasheet на русском

Конденсатор С7 определяет рабочую частоту преобразователя напряжения, которая в этом устройстве составляет 30…80 кГц, в зависимости от входного напряжения питания и потребляемого подключенной нагрузкой тока. Дроссель L2 накопительный.

Конденсаторы С8-С11 и дроссель L3 сглаживают пульсации выходного напряжения, размах амплитуды которых при максимальном токе нагрузки не превышает 5 мВ на рабочей частоте преобразования. Выходное напряжение определяется соотношением сопротивлений резисторов R2 и R3. Чем больше сопротивление R3, тем будет выше выходное напряжение.

Стабилитроны VD3-VD5 с напряжением стабилизации 5,6 В защищают нагрузку от повреждения высоким выходным напряжением при неисправности ИМС DA1. В случае если составной ключевой транзистор микросхемы будет пробит, выходное напряжение стабилизатора будет стремиться достигнуть по величине входного напряжения, стабилитроны VD3-VD5 откроются и ограничат выходное напряжение на уровне рабочего напряжения стабилитронов.

Ток через эти стабилитроны резко возрастёт, также возрастёт ток и через самовосстанавливающийся предохранитель FU1, предохранитель быстро разогреется и перейдёт в состояние высокого сопротивления, протекающий через него, стабилитроны и нагрузку ток резко снизится. Сверхьяркий светодиод HL1 сигнализирует о наличии выходного напряжения.

Самовосстанавливающийся предохранитель необходим также и для защиты исправной микросхемы от перегрузки, поскольку при некоторых сочетаниях тока нагрузки и входного напряжения стабилизатора встроенная в микросхему защита может оказаться неэффективной.

При входном напряжении импульсного стабилизатора 12 В и потребляемом нагрузкой токе 0,5 А, потребляемый стабилизатором ток составит около 280 мА. Таким образом, КПД преобразователя напряжения составит около 60%. Если бы на месте импульсного стабилизатора был линейный стабилизатор напряжения, то при таких же условиях его КПД оказался бы не более 41%.

Причём с ростом входного напряжения разрыв в КПД между импульсным и линейным стабилизатором будет увеличиваться. Микросхемы серии МС33063 при работе в качестве понижающих преобразователей напряжения не являются лидерами по КПД, одна из причин этого — составной транзистор Дарлингтона в качестве силового ключа. Тем не менее, они дёшевы, компактны, благодаря чему, например, импульсные стабилизаторы на микросхемах серий МС33063 и МС34063 можно встретить в многофункциональных телефонных модемах Zyxel серии Omni 56К, планшетных сканерах Genius ColorPage и др. устройствах.

Конструкция и детали

Вид на монтажную плату устройства показан на фото 1. Монтаж двусторонний навесной. Интегральную микросхему MC33063AVP можно заменить МС34063АР, МС34063АР1, МС33063АР1, КА34063А, IP33063N, IP34063N. Микросхема MC33063AVP отличается от остальных значительно большей термостойкостью — 125°С вместо 70…85″С у остальных.

Для повышения надёжности работы микросхемы к её корпусу необходимо приклеить латунный или медный теплоотвод с площадью охлаждающей поверхности 6… 10 см2 (одна сторона). Приклеить теплоотвод можно с помощью теплопроводящего клея «Алсил», «Радиал», моментальным клеем «Секунда» или аналогичным, способным склеивать металлы, например, БФ.

Диоды с барьером Шоттки 1 N5819 можно заменить на MBRS140T3, MBR150, MBR160, BW10-40. Вместо стабилитронов 1N4734A подойдут BZV55C-5V6, TZMC-5V6. На время проверки работоспособности устройства и его настройки стабилитроны отключают.

Светодиод RL30-CD744D можно заменить любым аналогичным сверхьярким синего или белого свечения. Подойдут и другие светодиоды общего применения.

Конденсаторы С1-СЗ керамические или плёночные на рабочее напряжение не ниже 35 В. Конденсаторы С4, С6 керамические или танталовые (SMD) на рабочее напряжение не менее 25 В. Конденсатор С7 плёночный или керамический. Конденсаторы С8, СЮ танталовые. Конденсатор С11 керамический. Конденсаторы С5, С9 оксидные алюминиевые.

Резистор R1 типа МЛТ, С1 -4, С2-23 или импортный аналог. Остальные резисторы применены малогабаритные для поверхностного монтажа (SMD).

Все дроссели могут быть изготовлены на кольцах из низкочастотного феррита НМ2000 размерами 10x6x5 мм. Дроссель L1 содержит один виток сложенного вдвое многожильного монтажного провода. Дроссель L2 состоит из двух таких колец, склеенных вместе. Он имеет 15 витков литцендра-таПЭВ-1 11×0,13. При наличии достаточного свободного места в корпусе, желательно для этого дросселя применить три склеенных вместе таких кольца. Дроссель L3 содержит 10 витков такого же или одножильного провода ПЭВ-2 0,68.

Читайте так же:
Компрессор из огнетушителя и автомобильного насоса

Полимерный самовосстанавливающийся предохранитель можно заменить на MF-R030, LP60-030.

33063Ap1 datasheet на русском

Устройство в сборе показано на фото. Корпус изготовлен из телефонной розетки 2xRJ11 размерами 58x42x21 мм. В корпусе закреплены: входное гнездо питания XS1 с припаянным к его выводам конденсатором С1; USB-гнез-до XS2 и светодиод HL1. Безошибочно собранный из исправных деталей стабилизатор начинает работать сразу.

При необходимости, подбором сопротивления резистора R3 можно изменить выходное напряжение. Нежелательно увеличивать его более 5,3 В. При настройке стабилизатора на питание нагрузки напряжением +5 В, рекомендуется устанавливать выходное напряжение в пределах 5,05…5,1 В, чтобы компенсировать падение напряжения в соединительных проводах.

Благодаря наличию диода VD1, этот стабилизатор можно подключать к сетевым адаптерам с выходным напряжением переменного тока частотой 50 Гц. Подойдут адаптеры питания с напряжением на вторичной обмотке силового трансформатора 11… 16 В.

Источник: Радиоаматор №4 2014 Автор: Андрей Бутов, с. Курба, Ярославской обл.

33063Ap1 datasheet на русском

ຂໍ້ມູນຂ່າວສານດ້ານເຕັກນິກຂອງ 33063AP1
ຫມາຍເລກຜູ້ຜະລິດ33063AP1ປະເພດIntegrated Circuits (ICs)
ຜູ້ຜະລິດOriginalລາຍລະອຽດ33063AP1 Original
Package / Caseຈໍານວນທີ່ມີຢູ່6000 pcs
DIPCondtionNew Original Stock
ການຮັບປະກັນ100% Perfect Functionsເວລານໍາ2-3days after payment.
ການຊໍາລະເງິນPayPal / Telegraphic Transfer / Western Unionສົ່ງໂດຍDHL / Fedex / UPS
PortHongKongRFQ EmailInfo@ariat-tech.com
ດາວໂຫລດ33063AP1 PDF — EN.pdf
ຫຸ້ນ 33063AP1ລາຄາ 33063AP1ເອເລັກໂຕຣນິກ 33063AP1
ອົງປະກອບ 33063AP1ສິນຄ້າຄົງຄັງ 33063AP133063AP1 Digikey
ຜູ້ສະ ໜອງ 33063AP1ສັ່ງຊື້ 33063AP1 Onlineສອບຖາມຂໍ້ມູນ 33063AP1
ຮູບພາບ 33063AP1ຮູບ 33063AP1ເອກະສານ 33063AP1 PDF
33063AP1 Datasheetດາວໂຫລດເອກະສານຂໍ້ມູນ 33063AP1ຜູ້ຜະລິດ

The latest data from the market research agency Omdia shows that in the third quarter of 2021, semiconductor revenue exceeded US$150 billion, the firs.

According to the latest report of the research organization Susquehanna Financial Group, the chip delivery period in November was 4 days longer than t.

A few days ago, a report released by the market research organization IDC showed that global wearable device shipments in the third quarter of 2021 we.

Regarding Apple’s A-series bionic chips, Ying-Wu Liu, a technology and cost analyst at System Plus Consulting, said: “Apple’s A14 bionic chip is co.

On December 6, the market research organization Omdia released the report "Development Plan and Outlook for OLED Notebook Panels in 2022", showing tha.

PD30 Series Photoelectric Sensor ເຊັນເຊີ photoelectric sensors ຂະ ໜາດ ນ້ອຍຂອງ Car.

Mc 34063 микросхема datasheet на русском

Для питания портативной электронной аппаратуры в домашних условиях зачастую используют сетевые источники питания. Но это не всегда бывает удобно, поскольку не всегда по месту использования имеется свободная электрическая розетка. А если необходимо иметь несколько различных источников питания?

Одно из верных решений это изготовить универсальный источник питания. А в качестве внешнего источника питания применить, в частности, USB-порт персонального компьютера. Не секрет, что в типовом USB-разъеме предусмотрено питание для внешних электронных устройств напряжением 5В и токе нагрузки не более 500 мА.

Но, к сожалению, для нормальной работы большинства переносной электронной аппаратуры необходимо 9 или 12В. Решить поставленную задачу поможет специализированная микросхема преобразователь напряжения на MC34063, которая значительно облегчит изготовление лабораторного блока питания с требуемыми параметрами.

Структурная схема преобразователя mc34063:

Предельные параметры работы MC34063

Описание схемы преобразователя

Ниже представлена принципиальная схема варианта источника питания, позволяющего получить 9В или 12В из 5В USB-порта компьютера.

За основу схемы взята специализированная микросхема MC34063 (ее российский аналог К1156ЕУ5). Преобразователь напряжения MC34063 представляет собой электронную схему управления DC / DC — преобразователем.

Она имеет температурно-компенсированный источник опорного напряжения (ИОН), генератор с изменяемым рабочим циклом, компаратор, схему ограничения по току, выходной каскад и сильноточный ключ. Эта микросхема специально изготовлена для использования в повышающих, понижающих и инвертирующих электронных преобразователях с наименьшим числом элементов.

Выходное напряжение, получаемое в результате работы, устанавливается двумя резисторами R2 и R3. Выбор номинала резисторов производится из расчета, что на входе компаратора (вывод 5) должно быть напряжение равное 1,25 В. Вычислить сопротивление резисторов для схемы можно используя несложную формулу:

Зная необходимое выходное напряжение и сопротивление резистора R3, можно довольно легко определить сопротивление резистора R2.

Так как выходное напряжение определяется резисторным делителем, можно значительно улучшить схему, включив в схему переключатель, позволяющий получать всевозможные значения по мере необходимости. Ниже приведен вариант преобразователя MC34063 на два выходных напряжения (9 и 12 В)

Детали преобразователя MC34063

Резисторы, используемые в преобразователе, — любые, мощностью от 0,125 Вт до 0,5 Вт, типа МЛТ или С2-29, неполярные конденсаторы — типа КД, КМ, К10-17 и т.п. Электролитические конденсаторы — типа К50-29, К50-35 или подобные. Индуктивность дросселя L1 – от 120 до 180 мкГн, мощностью не менее 200 мВт. В качестве дросселя L2 использована интегральная индуктивность типа ЕС24 или аналогичная. Индуктивность этого дросселя должна быть в районе от 10 до ЗЗ мкГн.

Скачать калькулятор для mc34063 (994,1 Kb, скачано: 9 502)

Скачать datasheet mc34063 (1,1 Mb, скачано: 3 926)

Импульсный регулятор напряжения MC34063A (полный российский аналог КР1156ЕУ5) – специально разработанная микросхема для DC-DC преобразователей с минимальным количеством внешних элементов. Микросхема MC34063A применяется в импульсных источниках питания со входным напряжением от 3 до 40В и выходным током до 1,5А:

повышающих (Step-up converter)

понижающих (Step-down converter)

инвертирующих (Voltage inverting converter).

На практике приходилось встречаться только с вариантами источников питания

повышающих – Феликс 02К, цепь формирования 24В из 12В

понижающих – практически все фискальные регистраторы работающие от 24В, принтеры этикеток и прочее оборудование, где входное напряжение питания больше 5 вольт. Поэтому будем рассматривать только первые два варианта использования микросхемы MC34063A.

Рекомендуемая литература.

  1. Datasheet MC34063A на английском (скачать).
  2. Описание работы КР1156ЕУ5 (аналог MC34063A) на русском (cкачать).
  3. И.Л. Кольцов «33 схемы на КР1156ЕУ5» (скачать).
  4. Документ AN920/D. В данном документе приведены формулы для расчета преобразователей DC-DC на базе микросхемы MC34063. Рассмотрен принцип работы. (скачать).

Общее описание.

Рис. Структурная схема MC34063A (русский datasheet)Рис. Структурная схема MC34063A (английский datasheet)

Мощный электронный ключ на составном транзисторе (VT1 и VT2), который соединен со схемой управления. На нее поступают импульсы синхронизации от генератора, скважность которых зависит от сигнала схемы ограничения по току. Также на схему управления подается сигнал обратной связи с компаратора. Он производит сравнение напряжения обратной связи с напряжением внутреннего источника опорного напряжения. Стабильность параметров выходного напряжения микросхемы полностью обеспечивает источник опорного напряжения, т.к. его напряжение не зависит от изменений температуры окружающей среды и колебания входного напряжения.

Рис. Расположение выводов (pinout) MC34063A

Switch Collector (VT1) Коллектор выходного транзистора.

Switch Emitter (OUT) Эмиттер выходного транзистора.

Timing Capacitor (OSC) Вывод для подключения времязадающего конденсатора.

Ground (Gnd) Общий вывод.

Comparator Inverting Input (CMP) Вход компаратора – инвертирующий .

Vcc (Uin) Напряжение питания (3. 40В).

Ipk Sense (Rt) Вход схемы ограничения тока, сюда подключается токоограничивающий резистор. Ipk пиковый ток через индуктивность, где Ipk Схема подключения.

Микросхема МС34063A имеет два входа, которые можно использовать для стабилизации тока.

Один вход имеет пороговое напряжение 1.25В (5 нога), что для мощной нагрузки не выгодно из-за потерь мощности. Например, при токе 1000 мА имеем потери на резисторе-датчике тока величиной 1.25*1А=1.25Вт, что сопоставимо с потерями мощности на линейном стабилизаторе.

Второй вход микросхемы имеет пороговое напряжение 0.3В (7 нога), и предназначен для защиты встроенного транзистора от перегрузки по току.

Рис. Схема понижения (Step-down converter)

Рис. Схема повышения (Step-up converter)

С2– конденсатор задающий частоту преобразования.

VD1 – быстродействующий диод, практически вся схема зависит от быстродействия этого диода. При использовании диодов Шотки, диод должен выдерживать обратное напряжение вдвое превышающее выходное напряжение.

R1 – Токовый датчик, задает максимальный ток на выходе стабилизатора. При превышении максимального тока – микросхема отключится, фактически является защитой от короткого замыкания (перегрузки) на выходе. Обладает довольно большой рассеиваемой мощностью, от 0,5 Вт до 2Вт, на практике иногда выглядит в виде нескольких параллельно включенных резисторов.

Важное замечание! Опорное напряжение токового входа микросхемы 34063 различается у разных корпусов, с разбросами от 0,25В до 0,45В. . Стандартные расчеты принимаются для опорного напряжения 0,3В. Таким образом если напряжение на шунте станет выше чем 0.3 вольта, микросхема 34063 отключится. (Например резистор R1=1 Ом, тогда при достижении U=1 Ом*0,3А=0,3В сработает защита по току и микросхема отключится. На практике это означает, что при значении резистора R1=1 Ом выходной ток источника питания будет 0,3А).

R2, R3 — делитель напряжения, с помощью которого задается выходное напряжение.

Рис. Выходное напряжение, формула расчета.

Фильтр рассмотрим отдельно, так как именно фильтр является слабым звеном при эксплуатации.

L1 – накопительная и фильтрующая индуктивность. Данную индуктивность настоятельно не рекомендуется уменьшать, так же именно эта индуктивность задает выходной ток, поэтому толщина провода довольно критичный параметр. На практике такая схема фильтра довольно редкое явление, как правило ставится второй LC фильтр, индуктивности включаются встречно.

С3 – принцип такой же как у катушки индуктивности. Несмотря на расчеты, если нет ограничения по размерам, конденсатор на 470 мкФ увидеть здесь довольно редкое явление. А вот конденсатор на 1000 мкФ здесь общепринятый стандарт (рассматриваем схемы Uвх=24В, Uвых=5В). Конденсатор должен быть LOW ESR, однако на практике это довольно редкое явление, ставится обычный конденсатор. Хотя если поднять оборудование 2000-2002 г.в. то там можно встретить LOW ESR конденсаторы в фильтре. Некоторые производители ставят в параллель ВЧ конденсатор, однако это довольно спорное решение.

Конденсатор фильтра для понижающих (Step-down converter) источников питания не является обязательным элементом, при достаточно большой индуктивности фильтра.

"Наш мир погружен в огромный океан энергии, мы летим в бесконечном пространстве с непостижимой скоростью. Всё вокруг вращается, движется – всё энергия. Перед нами грандиозная задача – найти способы добычи этой энергии. Тогда, извлекая её из этого неисчерпаемого источника, человечество будет продвигаться вперёд гигантскими шагами" Никола Тесла (1891)

воскресенье, 26 июня 2016 г.

Микросхема MC34063 схема включения

Основные технические характеристики MC34063

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.

Структура схемы:

  1. Источник опорного напряжения 1,25 В;
  2. Компаратор, сравнивающий опорное напряжение и входной сигнал с входа 5;
  3. Генератор импульсов сбрасывающий RS-триггер;
  4. Элемент И объединяющий сигналы с компаратора и генератора;
  5. RS-триггер устраняющий высокочастотные переключения выходных транзисторов;
  6. Транзистор драйвера VT2, в схеме эмиттерного повторителя, для усиления тока;
  7. Выходной транзистор VT1, обеспечивает ток до 1,5А.

MC34063 повышающий преобразователь

Например я данную микросхему использовал чтобы получить 12 В питание интерфейсного модуля от ноутбучного порта USB (5 В), таким образом интерфейсный модуль работал когда работал ноутбук ему не нужен был свой источник бесперебойного питания.
Также имеет смысл использовать микросхему для питания контакторов, которым нужно более высокое напряжение, чем другим частям схемы.
Хотя MC34063 выпускается давно, но возможность работы от 3 В, позволяет её использовать в стабилизаторах напряжения питающихся от литиевых аккумуляторов.
Рассмотрим пример повышающего преобразователя из документации. Эта схема рассчитана на входное напряжение 12 В, выходное — 28 В при токе 175мА.

  • C1 – 100 мкФ 25 В;
  • C2 – 1500 пФ;
  • C3 – 330 мкФ 50 В;
  • DA1 – MC34063A;
  • L1 – 180 мкГн;
  • R1 – 0,22 Ом;
  • R2 – 180 Ом;
  • R3 – 2,2 кОм;
  • R4 – 47 кОм;
  • VD1 – 1N5819.

В данной схеме ограничение входного тока задается резистором R1, выходное напряжение определяется соотношением резистором R4 и R3.

Понижающий преобразователь на МС34063

Понизить напряжение значительно проще – существует большое количество компенсационных стабилизаторов не требующих катушек индуктивности, требующих меньшего количества внешних элементов, но и для импульсного преобразователя находиться работа когда выходное напряжение в несколько раз меньше входного, либо просто важен КПД преобразования.
В технической документации приводиться пример схемы с входным напряжение 25 В и выходным 5 В при токе 500мА.

  • C1 – 100 мкФ 50 В;
  • C2 – 1500 пФ;
  • C3 – 470 мкФ 10 В;
  • DA1 – MC34063A;
  • L1 – 220 мкГн;
  • R1 – 0,33 Ом;
  • R2 – 1,3 кОм;
  • R3 – 3,9 кОм;
  • VD1 – 1N5819.

Данный преобразователь можно использовать для питания USB устройств. Кстати можно повысить ток отдаваемый в нагрузку, для этого потребуется увеличить емкости конденсаторов C1 и C3, уменьшить индуктивность L1 и сопротивление R1.

МС34063 схема инвертирующего преобразователя

Третья схема используется реже двух первых, но не менее актуальна. Для точного измерения напряжений или усиления аудио сигналов часто требуется двуполярное питание, и МС34063 может помочь в получении отрицательных напряжений.
В документации приводиться схема позволяющая преобразовать напряжение 4,5 .. 6.0 В в отрицательное напряжение -12 В с током 100 мА.

MC34063 datasheet по-русски

Рынок электроники сегодня предоставляет много вариантов микросхем для стабилизации и преобразования напряжения. Я остановлюсь на самом пожалуй распространенном контроллере серии 34063.

Эта микросхема хороша тем что она доступна, на её базе легко изучить устройство и работу шим контроллеров. Сама микросхема копеечная так что если в ходе работы вы спалите пару штук, то будет не жалко.

Для MC34063 есть в сети много удобных калькуляторов где легко рассчитать нужные параметры вашего устройства.

У MC34063 масса аналогов, и даже есть отечественный — КР1156ЕУ5. Диапазон рабочих напряжений MC34063 от 3 до 40 вольт. Коммутируемый ток ключа MC34063 до 1.5 А.
Данный контроллер почти так же популярен, как таймер 555 серии.

Собирая данное устройство вы получите массу опыта в налаживании подобных устройств и в дальнейшем перейдёте к более сложным схемам. Для запуска контроллера в работу потребуется сама микросхема MC34063, индуктивность, диод, пару конденсаторов на 100 — 500 мкф, и 3 — 4 резистора.

Теперь о том как это всё работает:

Смотрим на 1 схему step-down, это работает почти как обычный шим стабилизатор.

i0030rp 1 8883225

Данное включение MC34063 реализует только понижение входного напряжения !

При уравнивании или снижении входного напряжения ниже заданного выходного, ключевой транзистор открывается и мы имеем прямой переток напряжения через ключ и индуктивность к выходу устройства.

Индуктивность и емкость в выходной цепи образуют фильтр.

При открытии ключа дроссель набирает энергию. При закрытии ключа микросхемы, обратная ЭДС дросселя фильтра разряжается через диод и конденсатор Co. Данный цикл постоянно повторяется с заданной частотой.

Такая схема хорошо подходит для того что бы снизить напряжение например с 12- 9 вольт на 5 или 3.3 вольта. Есть вариант поставить для этих целей обычный стабилизатор типа 7805. Но это не очень практично.

Допустим вы снижайте напряжение батареи крона через линейный стабилизатор до 5 вольт, тут вы теряйте на нагреве стабилизатора почти 50% энергии, а если вам нужно 3.3 вольта то на нагрев уйдёт уже 70%, это уже не лезет ни в какие ворота .

А если то же самое проделать с шим контроллером то потери упадут до 13%, плюс радиатор вам не понадобится. КПД данного вида преобразователя 87%. В реалии при замере у меня MC34063 в работе кушает 2-3 мА.

По паспорту 4 мА, что возможно так же зависит от производителя микросхемы.

Стабилизирует схема выходное напряжение, с помощью делителя на двух резисторах R1;R2 подключенных к 5 выводу микросхемы. Как только напряжение на 5 выводе превысит 1.25 вольта, компаратор переключит тригер и ключ микросхемы закроется. Так ограничивается рост напряжения на выходе устройства.

Меняя номиналы этих резисторов можно задавать напряжение выхода.

На практике часто ставится переменный резистор, средняя точка которого идёт к 5 выводу MC34063, а крайние выводы подключаются один к земле другой к выходному напряжению.

Резистор Rsc между 7 и 6 выводами задаёт максимальный ток ключа микросхемы. Защита срабатывает когда между выводами 7 и 6 напряжение подымается более 0.3 вольта.

На 3 выводе MC34063 стоит конденсатор задающий частоту внутреннего генератора. Максимальная частота по паспорту 100 кГц. Чем меньше индуктивность тем больше нужно частоту и наоборот.

Теперь рассмотрим схему 2 включения MC34063, Step-Up.По нашему, это преобразователь на обратной ЭДС

Внимание данная схема работает только на повышение входного напряжения!

i0038rp 2 5922507

Работает данная схема следующим образом: Как только включили питание, на конденсаторе Со сразу появляется напряжение 12 вольт которое протекает от входа через индуктивность и диод пока ключ закрыт.

Затем ключ контроллера открывается на короткое время, подавая минусовой потенциал на индуктивность L. При закрытии ключа ток с индуктивности L разворачивается в обратную сторону и через диод дозаряжает ёмкость Co до 28 вольт.

Далее циклы повторяются с заданной частотой. КПД данной схемы заявлено 83% .

В данном включении появился дополнительный резистор на 8 ноге микросхемы, который необходим для устойчивой работы ключа в схеме Step-Up .

Такая схема хорошо подходит для повышения напряжения основного источника питания. Допустим, вам нужно поднять напряжение с двух элементов по 1.5 = 3 вольта до 9 вольт. Эта схема как раз справится с такой задачей. На практике MC34063 уверенно стартует с 2 вольт, при заявленном нижнем пороге в 3 вольта.

Данный параметр зависит от производителя микросхемы.

Что произойдёт, если в такой схеме мы подымем входное напряжение выше выходного? Напряжение свободно пройдёт через индуктивность и диод и окажется на выходе. Ключ при этом будет закрыт.

Другими словами данная схема не стабилизирует напряжение выше установленного на выходе.

Но если вам нужно стабилизировать напряжение в широком диапазоне, допустим от 15 до 3 вольт при заданном выходном 5 вольт то обе данные схемы не подходят под такую задачу.

Возможно для этого включить обе схемы последовательно, первую Step-Up — вторую Step-down. Но думаю это нам не понадобится так как для этого есть третий вариант включения MC34063, инвертором.

i0040rp 9461210

Название пошло от того, что мы получаем этим способом напряжение обратной полярности относительно общего провода питания.
Принцип основан так же на работе с обратной ЭДС.

Разница здесь в том что мы заряжаем индуктивность L положительным потенциалом, а при выбросе обратной ЭДС, снимаем с дросселя отрицательный потенциал. Схема работает на чистой обратной ЭДС чем обусловлен её более низкий КПД по сравнению со схемой Step-Up (по паспорту 62%).

Соответственно в данном включении необходима большая ёмкость конденсаторов фильтра на выходе для сглаживания пульсаций напряжения.

Обратите внимание на 4 ногу микросхемы. В данной схеме она подключена не к массе, как в первых двух схемах , а к минусу выходного напряжения. Это изменение необходимо, так как компаратор у нас не работает при отрицательном потенциале на 5 выводе. Учитывайте этот факт при построении схемы!

Номиналы резисторов R1 и R2 для всех трёх схем идентичные, То есть, если к примеру делителем R1=1 кОм, R2= 3 кОм было задано 5 вольт, то во всех трёх вариантах на выходе при этих номиналах будет 5 вольт.

Внимание: в этой схеме инвертора резисторы R1 и R2 меняются местами, что хорошо видно на схеме!

Для снижения пульсаций по питанию при работе MC34063, производителем рекомендовано ставить дополнительный фильтр на выходе устройства, как показано справа на каждой схеме.

Применение данных схем в электронных конструкциях очень разнообразно. Драйвер тока светодиода фонарика , зарядное устройства для аккумуляторов, стабилизированные блоки питания радиоаппаратуры.

Питание схемы двухполярным напряжением от однополярного источника.

Для повышения КПД схем на MC34063 рекомендуется ставит на выходе, дополнительный мощный ключ с низким сопротивлением открытого перехода.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector