Hydratool.ru

Журнал "ГидраТул"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сколько электричества расходует бытовая техника

Сколько электричества расходует бытовая техника?

Сколько электричества расходует бытовая техника?

Потребляемая мощность – одна из основных характеристик электроприборов. Поэтому на любом электроприборе или в инструкции к нему должна быть точная информация о количестве ватт, необходимых для его работы. Конечно, количество расходуемой электроэнергии может изменяться. Например, количество энергии, потребляемое компьютером, зависит от мощности блока питания и загруженности компьютера. В случае с холодильником, оно зависит от его объема и количества хранящихся в нем продуктов, а со стиральной машиной – от режима стирки, выставленной температуры, массы белья и т. д. Предлагаю вам список различных электроприборов с указанием их примерной мощности в ваттах, который поможет рассчитать потребляемую электроэнергию.

В приведенном ниже рейтинге указана приблизительная мощность бытовых электроприборов в порядке убывания:

1. Электрическая печь – 17 221 ватт
2. Центральный кондиционер – 5000 ватт
3. Сушильная машина для белья и одежды – 3400 ватт
4. Духовка электрическая – 2300 ватт
5. Посудомоечная машина – 1800 ватт
6. Фен – 1538 ватт
7. Обогреватель – 1500 ватт
8. Кофеварка – 1500 ватт
9. Микроволновая печь – 1500 ватт
10. Аппарат для приготовления попкорна – 1400 ватт
11. Тостер-печь (тостер овен) – 1200 ватт
12. Утюг – 1100 ватт
13. Тостер – 1100 ватт
14. Комнатный кондиционер – 1000 ватт
15. Электрическая кухонная плита – 1000 ватт
16. Пылесос – 650 ватт
17. Нагреватель воды – 479 ватт
18. Стиральная машина – 425 ватт
19. Кофеварка эспрессо (эспрессо-машина) – 360 ватт
20. Осушитель воздуха – 350 ватт
21. Плазменный телевизор – 339 ватт
22. Блендер – 300 ватт
23. Морозильная камера – 273 ватта
24. Жидкокристаллический телевизор (LCD) – 213 ватт
25. Игровая приставка – 195 ватт
26. Холодильник – 188 ватт
27. Обычный телевизор (с электронно-лучевой трубкой) – 150 ватт

28. Монитор – 150 ватт

29. Компьютер (блок питания) – 120 ватт
30. Портативный вентилятор – 100 Вт
31. Электрическое одеяло – 100 Вт
32. Стационарный миксер – 100 Вт
33. Электрическая открывалка для банок – 100 Вт
34. Плойка для завивки волос – 90 Вт
35. Потолочный вентилятор – 75 Вт
36. Увлажнитель воздуха – 75 Вт
37. Лампа накаливания (60-ваттная) – 60 Вт
38. Стереосистема – 60 Вт
39. Ноутбук – 50 Вт
40. Принтер – 45 Вт
41. Цифровой видеорегистратор (DVR) – 33 Вт
42. Аквариум – 30 Вт
43. Кабельная коробка – 20 Вт
44. Компактная люминесцентная лампа (энергосберегающая
лампа), эквивалентная 60-ваттной – 18 Вт
45. DVD-плеер – 17 Вт
46. Спутниковая антенна – 15 Вт
47. Видеомагнитофон – 11 Вт
48. Радиочасы – 10 Вт
49. Переносная стерео-система (бумбокс) – 7 Вт
50. Беспроводной роутер Wi-Fi – 7 Вт
51. Зарядка для мобильного телефона – 4 Вт
52. Беспроводной телефон – 3 Вт
53. Автоответчик – 1 Вт

Суммарная мощность бытовой техники составляет 47 782 Вт или 47,782 кВт.

Сколько электричества расходует бытовая техника?

Учитывая эти данные, 1000 ватт-часов (или 1 киловатт-часа) хватит для того, чтобы:

1. Получить 60 000 сообщений на автоответчик
2. Открыть 7200 банок электрическим консервным ножом
3. Прослушать 2143 песни на переносном
стереомагнитофоне
4. Напечатать 1333 страницы на принтере
5. Приготовить 400 коктейлей в блендере
6. Замесить миксером 300 порций теста
7. Зарядить мобильный телефон 278 раз
8. Послушать 250 песен через стереосистему
9. Приготовить 100 тостов в тостер-овене
10. Сделать 67 причесок с помощью плойки для волос
11. Приготовить 36 гренок в тостере
12. Разговаривать 15 дней по телефону
13. Использовать беспроводной
маршрутизатор Wi-Fi 6 дней
14. Использовать радио-часы 4 дня
15. Записать 45 фильмов на видеомагнитофон
16. Использовать спутниковую антенну 67 часов
17. Просмотреть 29 фильмов на DVD-плеере
18. Использовать энергосберегающую лампочку 56 часов
19. Использовать кабельную коробку 50 часов
20. Использовать аквариум 33 часа
21. Использовать цифровой видеорегистратор (DVR) 30 часов
22. Пользоваться ноутбуком 20 часов
23. Использовать 60-ваттную лампу накаливания 17 часов
24. Использовать увлажнитель воздуха 13 часов
25. Использовать потолочный вентилятор 13 часов
26. Пользоваться электрическим одеялом 1 ночь
27. Использовать портативный вентилятор 10 часов

28. Использовать компьютер (системный блок) 8 часов
29. Использовать монитор 7 часов
30. Посмотреть 13 серий ситкома по телевизору с ЭЛТ
31. Посмотреть 9 серий ситкома на ЖК-телевизоре (LCD)
32. Использовать холодильник 5 часов
33. Использовать игровую приставку 5 часов
34. Использовать осушитель воздуха 3 часа
35. Просмотреть 6 серий ситкома
на плазменном телевизоре
36. Использовать морозилку 4 часа
37. Разогреть 13 блюд в микроволновке
38. Приготовить эспрессо с помощью
эспрессо-машины 11 раз
39. Погладить утюгом 5 рубашек
40. Сделать 4 прически с помощью фена
41. Приготовить 4 пакета попкорна в попкорн-машине
42. Постирать белье в стиральной машине 3 раза
43. Заварить кофе в кофеварке 3 раза
44. Использовать нагреватель воды 2 часа
45. Приготовить 2 блюда на электроплите
46. Пылесосить полтора часа
47. Использовать комнатный кондиционер 1 час
48. Использовать обогреватель 40 минут
49. Испечь 1 раз кексы в духовке
50. Использовать центральный кондиционер 12 минут
51. Использовать электропечь 3 минуты
52. Использовать сушильную машину 18 минут
(хватает на 0,4 полного цикла сушки)
53. Пользоваться посудомойкой 33 минуты
(хватает на 0,3 цикла работы машины)

1 ампер — это сколько киловатт мощности? Сколько ампер в 1 киловатте?

Эти две величины не совсем соизмеримы (совместимы) в Киловаттах измеряется мощность, а вот в Амперах сила тока.

Но если надо, то высчитать можно, напряжение мы знаем 220-ь Вольт (или 380-т, надо смотреть по месту).

В одном киловатте 1000а Ватт, делим 1000-у на 220-ь, получаем 4,54545454545, если округлить (точная цифра просто не нужна, для этих расчётов), то 4,5-ь Ампер в 1000-е Ваттах (одном киловатте).

То есть амперы высчитываются путём деления Ватт на Вольты.

1 ампер — это сколько киловатт мощности?

Один ампер равен 0,22 киловаттам (см. выше), для сети 220 Вольт и соответственно один амер равен 0,7 Киловаттам, если сеть 380 Вольт "звезда" на 220 и 1,1 Киловаттам, если сеть 380 Вольт "треугольник".

Формула для расчёта для 220 вольт не сложная, вот она

"I", это те самые амперы которые мы вычиляем.

"Р", в данной формуле, это Ватты.

Всё, подставляем известные значения в формулу и производим расчёты.

Ещё более простой вариант, это воспользоваться специальной таблицей, вот одна из них,

Читайте так же:
Выключатель с подсветкой мигает лампочка

Ампер может быть в киловатте, только как "составляющая" и сам по себе без напряжения не существует.

Для того что бы ответить на этот вопрос, нужна еще одна характеристика — величина напряжения. Так для однофазной сети 220 вольт и трехфазной 380 вольт, ампераж будет разным, так как меняется напряжение.

Если например на розетке (или вилке) квартирной электрической сети написано 16 ампер это означает допустимую нагрузку по силе тока, которую может дать потребитель мощностью 16 х 220 = 3520 ватт, или 3,5 киловатта.

По этой же формуле вычисляем и ответ на вопрос.

Для однофазной сети 220 вольт —

1 ампер — это 220 ватт (или 0,22 киловатта)

В 1 киловатте 4,54545 Ампера

В 1 А содержится 0,658 кВт (для 380 Вольт).

Всё зависит от напряжения, на самом деле.

Один и тот же ампер с автомобильного двенадцативольтового аккумулятора — это одно, а дома из розетки — совсем другое.

Мощность потребляемая (ватты, киловатты. ) очень просто вычисляется — множим ток (в Амперах) на напряжение (в Вольтах). Если в розетке у нас положенные 220 Вольт, то потребитель с током 1 Ампер потребляет 220 (220*1) Ватт, то есть, 0,22 кВт.

Старые (советского образца) бытовые вилки и розетки рассчитывались на максимальный ток в 6 Ампер. Сейчас обычно на 10 Ампер. Превышать эти значения категорически не рекомендуется, даже запрещается — пожароопасно.

Корректно было бы спросить — если есть оборудование в 1 Квт мощностью, то сколько оно потребляет ампер? Например, есть у нас утюг с приведенной выше мощностью (а в ваттах это — 1000), в розетке, соответственно, ток переменный, с напряжением (в вольтах) 220 и частотой (в герцах) — 50. Ампер используется для измерения силы тока, которую можно найти так — разделить мощность (выраженную в ваттах) на сетевое напряжение. Получится так — 1000/220=4,55 (примерно) ампер. А вот, например, автомобильная лампочка на 50Вт работает на постоянном токе, с напряжением в 12В, тут сила тока (потребление ампер) составит — 50/12=4,17 (примерно). Но, это ведь на 50Вт, а если на 1000Вт (нужный вам киловатт), то значение будет иным — 4,17*20=83,3 (примерно). Словом, сила тока будет тем выше, чем меньше напряжение. Что это значит? А то, что сечение проводов в автомобиле должно быть больше. А при передаче тока на расстояния значительные (линии воздушные), чтобы уменьшить потери и, понятное дело, силу тока — нужно давать высокие показатели напряжения.

Ампер — это единица измерения силы тока. Эта электрическая величина входит в формулу расчета мощности любого электроприбора. Зная приложенное напряжение, умножаем его на силу тока и получаем величину мощности.

Так же можно вычистить силу тока по известной мощности и напряжению. Потребляемая мощность указывается в паспорте на электроприборы.![][1­ ]

Напряжение, применяемое в быту 220 или 380 В

Мощность делим на приложенное напряжение и получаем силу тока, протекающего через данный прибор. Мощность обозначают ВА.

Часто на элементах, которые используются в электрических цепях указывают на какой ток они рассчитаны, например розетки, автоматы. Например автомат на 10 ампер, зная напряжение можем высчитать мощность нагрузки, которую выдержит этот автомат. 10 А умножаем на 220 В получаем 2200 ВА мощности.

1 Ампер -0,22 Киловатта мощности.

1 ампер это ни сколько. Амперами меряют силу тока, а не электрическую мощность. Величина электрической мощности зависит не только от силы тока, но и от напряжения и вычисляется по формуле P = I x U x cos φ где Р это электрическая мощность, I — сила тока, U — напряжение, а косинус фи коэффициент мощности отражающий соотношение активной и реактивной составляющих нагрузки.

Как правило величину cos φ условно можно считать равной 09-0,95 кроме случаев когда предполагаются большие нагрузки типа сварочной техники,бытовых электроплит, обогревателей коэффициент становится равным 1 или чуть больше.

На своём личном опыте убедился насколько сложным является процесс подбора розеток и вилок к бытовым электрическим приборам, не говоря уже о подборе электропроводки, выключателей и автоматов. Обычный пользователь, не имеющий представления об электричестве, может запросто допустить ошибку с печальными последствиями.

Чтобы исключить вероятность ошибок необходимо или изучить данный вопрос, как это сделал я, или воспользоваться таблицами с данными.

Начну с самого начала, а именно для чего необходимо узнать сколько в амперах мощности в киловаттах. А нужно это для того, что на розетках, вилках, предохранителях и прочих элементах электропроводки пишут обозначения в амперах, показывая сколько может этот элемент выдержать силы тока, а в механизмах указывают мощность в ваттах или киловаттах, тем самым заставляя людей рассчитывать самостоятельно какой прибор к какой электропроводке подходит, и наоборот.

Чтобы было понятнее, для подключения лампочки в 100 Вт нужен один автомат, а чтобы подключить электроплиту нужен совершенно другой автомат, как и все остальные элементы (электрокабель, розетка, вилка, предохранитель и т.п.), в этом и есть разница.

Чтобы сопоставить мощность в ваттах и силу тока в амперах, нужно перевести значения одно в другое.

Для переменного напряжения произвести расчеты достаточно просто, надо лишь воспользоваться формулой пересчёта, куда кроме силы тока и мощности ещё добавляется напряжение.

Данная формула расчёта подходит только для однофазной сети

  • А — это Амперы
  • Вт — это Ватты
  • В — это Вольты

Пример 1 самый простой, допустим у вас напряжение в сети 220 Вольт, а прибор на 220 Ватт, значит чтобы найти амперы надо 220 Ватт разделить на 220 Вольт, получим 1 Ампер.

Пример 2 более сложный, допустим сетевое напряжение 220 Вольт, а кофемолка у вас на 600 Ватт, значит 600 Ватт надо разделить на 220 Вольт, получим 2,73 Ампера. Это значит, что для кофемолки нужно делать проводку не менее 3 Ампер.

Пример 3 условие вопроса , мы знаем, что у нас есть 1 Ампер и есть 220 Вольт, надо найти сколько это киловатт, а значит нужно 1 Ватт умножить на 220 Вольт, получим 220 Ватт.

Чтобы Ватт перевести в килоВатт, нужно разделить на 1000, получаем, что 220/1000=0,22 кВт.

Итак ответом на ваш вопрос будет:

В 1 А содержится 0,22 кВт (для 220 Вольт)

Для напряжения в 380 Вольт, трёхфазное, применяется несколько другая формула:

Из этой формулы следует, что:

В 1 А содержится 0,658 Квт (для 380 Вольт)

Для тех, кому лень пользоваться формулами и вычислением, существуют вот такие таблицы.

110 Ампер сколько киловатт

За электроэнергию нужно платить, так же как и за любые другие ресурсы и услуги. Чтобы не дать себя обмануть при оплате, нужно научиться рассчитывать ее расход. Для этого есть специальные приборы, например, индивидуальный счётчик, который установлен в каждом доме или квартире. Однако он показывает общее потребление, а как рассчитать расход электричества отдельным прибором мы расскажем в этой статье.

Читайте так же:
Какие виды редукторов бывают

Мощность, напряжение и ток

Основными характеристиками электроприборов являются напряжение, ток и мощность. При этом на корпусе либо в паспорте прибора могут указываться либо все три параметра, либо в избирательном порядке. В России и ближнем зарубежье используются электроприборы, рассчитанные под напряжение электросети 220В переменного тока, в Америке, для сравнения, может быть напряжение 110 или 120В.

Ток измеряется в Амперах (А), напряжение в Вольтах (В), а мощность в Ваттах (Вт). Если прибор маломощный — скорее всего мощность будет указана в Ваттах, для мощных потребителей, типа стиральной машины или кухонной электроплиты, указывают обычно в киловаттах (кВт). 1кВт = 1000Вт.

В паспорте прибора, в зависимости от конкретного случая, в явном виде мощность вообще может не указываться, а указываться потребление электроэнергии за какой-то период, например кВт в год или в день или за другой промежуток времени.

Итак, вы оплачиваете счета за электроэнергию согласно потребленными кВт/ч. Давайте более подробно рассмотрим, что такое киловатт часы и как их рассчитать.

Электросчетчик

Сейчас в каждой квартире установлен прибор учета электроэнергии или, говоря простыми словами, электросчетчик. На современных моделях есть дисплей, на котором указано количество кВт/ч, которое вы потребили с момента его установки.

На старых моделях это указывается на механическом дисплее-индикаторе из вращающихся барабанчиков с нанесенными на них цифрами.

Вы можете узнать потребление электроэнергии с помощью счетчика, если отключите все потребители и оставите тот, который вас интересует, например на 1 час, тогда вы сможете узнать, сколько Вт/ч или кВт/ч он потребляет. Но такой метод не всегда удобен и возможен.

На большинстве счетчиков крайняя правая цифра обычно либо отделяется запятой, либо выделяется другим цветом, либо обозначается другим способом. Это десятая часть киловатта, при снятии показаний для оплаты она не учитывается.

Также стоит отметить, что далеко не все электрооборудование потребляет указанную в документации мощность в течение всего времени работы. Это связано с режимом работы. Например, стиральная машина потребляет ток в зависимости от того включен ли нагрев, работает ли насос, с какой скоростью вращается двигатель и так далее.

Немного позже мы рассмотрим простой способ определить реальный расход такого оборудования.

Расход электроэнергии по мощности

Если вам известна электрическая мощность прибора, то для расчетов расхода электричества нужно умножить мощность на количество часов. Приведем пример, допустим, у нас есть 2 лампочки — 100 и 60Вт и электрочайник мощностью 2.1 кВт. В день лампочки светят около 6 часов, а чайник закипает 5 минут, пьете чай вы 4 раза в день, значит, всего он работает 20 минут в день.

Рассчитаем расход электроэнергии все этим оборудованием.

Электрочайник работает 20 минут в день, так как нам нужно перевести в часы, то это 1/3 часа, тогда:

Переведем в кВт/ч:

В день этот набор электрооборудования расходует 1.66 кВт/ч.

Как перевести амперы в киловатты?

В случаях, когда в данных о параметрах электроприбора указаны только напряжение и ток типа:

Если не вдаваться в подробности — это верно для нагрузки с cosФ равным единице, собственно и для большей части бытового электрооборудования. Дальнейшие расчёты аналогичны предыдущим.

Как узнать реальное потребление электроэнергии прибором?

Расчёты не покажут реальных значений, чтобы их узнать, нужно просто произвести измерения. Наиболее верным способом является использовать счётчик электроэнергии. Самым удобным вариантом является использование специального счётчика для розетки.

Их ещё называют энергометром или ваттметром, возможно, это поможет вам найти прибор в продаже.

Что может энергометр? Это универсальный измерительный прибор, обладающий следующим набором функций:

— Измерение мощности потребляемой в данный момент.

— Измерение потребления за промежуток времени.

— Измерение ток и напряжения.

— Расчёт расходов при заданных вами тарифах.

То есть вам нужно просто вставить его в розетку, а прибор, потребление которого нужно определить просто, подключить в розетку расположенную на энергометре. После этого вы можете наблюдать, как изменяется потребляемая мощность в процессе работы и сколько потребляется за один рабочий цикл.

Пример использования розеточного счетчика для определения расхода электроэнергии холодильником, изображен на видео.

Заключение

Расчёт расхода электроэнергии может понадобиться в ряде ситуаций, например для проверки потребления новым оборудованием, или при совместном использовании мощных потребителей с соседей для равной её оплаты. Лучшим способом является установка индивидуального счетчика на прибор или его розеточную версию, как было описано выше.

Ранее ЭлектроВести писали, что в рамках налоговой реформы правительство Австрии планирует отменить налог на электроэнергию собственного производства для собственного потребления в размере 1,5 евроцента за кВтчас.

Автомобильный генератор

Автомоби́льный генера́тор — устройство, обеспечивающее преобразование механической энергии вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор используется для питания электропотребителей, таких как система зажигания, автомобильная светотехника, бортовой компьютер, система диагностики и другие, а также для заряда автомобильного аккумулятора [1] . К автомобильным генераторам предъявляют высокие требования по надёжности, так как генератор обеспечивает бесперебойную работу большинства компонентов современного автомобиля. Типовая мощность современного генератора в легковом автомобиле около 1кВт.

Устройство и общий принцип работы [ править | править код ]

На первых автомобилях применяли коллекторные генераторы постоянного тока, коллекторный узел которых требовал постоянного контроля и частого обслуживания и, вдобавок, серьёзно ограничивал ток нагрузки. Появление мощных диодных выпрямителей, вначале селеновых, а позднее кремниевых, позволило использовать на автомобиле синхронный генератор переменного тока, несравнимо более надёжный и примерно втрое менее тяжёлый/материалоёмкий при той же мощности и более стабильном выходном токе.

В современных автомобилях применяются синхронные трёхфазные электрические машины переменного тока, а в выпрямителе применяют трёхфазный выпрямитель по схеме Ларионова.

Чтобы генератор после пуска двигателя отдавал ток в нагрузку, необходимо обеспечить питание обмотке возбуждения. Это происходит при повороте ключа замка зажигания в рабочее положение. Ток в обмотке возбуждения управляется стабилизатором напряжения, который может быть выполнен в виде отдельного узла или встроен в щёточный узел генератора. В подавляющем большинстве современных генераторов стабилизатор напряжения (СН) питается от отдельной секции выпрямителя. Ротор генератора приводится от коленвала через шкив от клинового ремня. Создаваемое обмоткой возбуждения электромагнитное поле индуцирует электрический ток в фазовых обмотках статора.

Читайте так же:
Инженер электрик где учиться

Из-за нестабильности частоты вращения двигателя и частых скачкообразных изменений нагрузки необходима стабилизация выходного напряжения генератора, её обеспечивает стабилизатор напряжения путём изменения тока возбуждения генератора.

Напряжение бортовой сети при работающем генераторе и исправном регуляторе напряжения поддерживается на уровне 13,9 — 14,5 В. Это напряжение необходимо для обеспечения прохождения тока заряда через аккумуляторную батарею, при этом необходимо обеспечить некоторое превышение совместного электрохимического потенциала всех пластин всех банок, иначе автомобильный аккумулятор не будет заряжаться.

На автомобилях и автобусах с мощными дизельными двигателями используются мощные автомобильные стартеры. Для обеспечения мощности без повышения потребляемого тока используется повышенное напряжение бортовой сети — 24 Вольта. Устанавливаются соответственно 24-вольтовые (номинально 28,4 Вольта) генераторы.

На старых автомобилях и мотоциклах напряжение в бортовой сети составляло 6 Вольт, генераторы тоже были 6-вольтовые, как правило, трёхщеточные постоянного тока с реле обратного тока (ГАЗ-67Б, Москвич-400, ЗИС-110).

Генераторы постоянного тока [ править | править код ]

На автомобилях выпуска до 1960-х годов (например ГАЗ-51, ГАЗ-69, ГАЗ-М-20 «Победа» и многих других) устанавливались генераторы постоянного тока.

На полюсах генератора (находятся на статоре), выполненных из электротехнической стали, находится обмотка возбуждения. На якоре генератора — силовая обмотка, с которой электрический ток снимается посредством коллектора с щётками. Обмотка возбуждения и обмотка якоря соединены параллельно, в цепь обмотки возбуждения включен реле-регулятор.

Реле-регулятор состоит из трёх электромагнитных реле:

1. Ключевой стабилизатор напряжения (на электрических схемах сокращённо обозначается СН) уменьшает магнитный поток в обмотке возбуждения (на статоре); обмотка реле включена последовательно с обмоткой возбуждения. При повышении напряжения на генераторе выше расчётного предела (например более 14,5 вольт) электромагнитное реле срабатывает и последовательно обмотке возбуждения включается дополнительное сопротивление, ограничивающее ток возбуждения, уменьшается магнитный поток, и, следовательно, напряжение на генераторе уменьшится. При уменьшении напряжения ниже расчётного электромагнитное реле шунтирует дополнительное сопротивление, ток в обмотке возбуждения возрастает, возрастает магнитный поток и напряжение на генераторе повышается. Поскольку процесс протекает с большой частотой, напряжение в бортовой сети автомобиля остаётся почти постоянным.

В автомобильных ключевых стабилизаторах напряжения генераторов постоянного тока реле является прецизионным триггером Шмитта, контакты реле, шунтирующие дополнительное последовательное сопротивление в обмотке возбуждения генератора — ключевым исполнительным элементом, а генератор — объектом управления.

Ключевой стабилизатор напряжения с триггером Шмитта прост по конструкции. Частота замыкания/размыкания ключа в нём определяется суммой постоянных времени заряда и разряда накопителя объекта управления (аккумулятора и других потребителей электроэнергии) и разницей между максимально допустимым и минимально допустимым напряжениями. Чем больше диапазон допустимых напряжений, тем меньше частота замыкания/размыкания ключа. При постоянной нагрузке частота замыкания/размыкания постоянна. Значительно меньшая частота замыкания/размыкания ключа в ключевых стабилизаторах напряжения на триггере Шмитта, по сравнению с другими схемами стабилизаторов, позволяет применять более низкочастотные ключи, которые дешевле высокочастотных и более широко распространены. Именно применение схемы ключевого стабилизатора напряжения с триггером Шмитта позволило применить в автомобильных регуляторах напряжения такие низкочастотные ключевые переключающие элементы, как реле.

2. Ограничитель тока (сокращённо ОТ) — электромагнитное реле, не позволяющее току генератора превышать расчётную величину. Обмотка ограничителя тока включена последовательно между генератором и потребителями. При достижении током расчётной силы, а значит и в обмотке ограничителя тока реле срабатывает и в цепь обмотки возбуждения включается дополнительное сопротивление, уменьшается ток возбуждения, уменьшается напряжение на генераторе, а следовательно, уменьшается ток, отдаваемый генератором. При отключении потребителей ограничитель тока поддерживает постоянную величину зарядного тока аккумуляторной батареи. При включении потребителей электроэнергии зарядный ток будет уменьшаться в зависимости от сопротивления нагрузки. При этом, если ток внешней цепи превышает максимально допускаемый ограничителем тока, то, кроме тока генератора, во внешнюю цепь пойдёт ток из аккумуляторной батареи, то есть батарея будет разряжаться.

Ограничитель тока и регулятор напряжения работают не одновременно. Пока ток, отдаваемый генератором не достигнет допускаемой максимальной величины, работает только регулятор напряжения. Когда ток генератора достигнет предельной величины, ограничитель тока включает дополнительное сопротивление, а регулятор напряжения перестаёт работать.

3. Реле обратного тока (сокращённо РОТ). При длительном прохождении тока из батареи через генератор могут перегреться обмотки, кроме того, бесполезно разряжается аккумулятор. Назначение реле обратного тока — автоматически отключать генератор от внешней цепи, когда его напряжение станет меньше напряжения батареи и включать генератор, как только напряжение генератора превысит расчётную величину.

Если на панели приборов установлена контрольная лампа работы генератора (зажигается при низком напряжении генератора, когда расходуется энергия аккумулятора) — устанавливается четвёртое реле (обычно выполняется в отдельном корпусе) — реле включения контрольной лампы.

В СССР серийно выпускались только вибрационные реле-регуляторы (с электромагнитными реле), в 1970-е — 1980-е годы отмечено появление радиолюбительских конструкций на полупроводниковых приборах (публиковались в журналах «Радио», «За рулём», «В помощь радиолюбителю».

Генераторы переменного тока [ править | править код ]

Первая конструкция генераторов переменного тока была представлена фирмой «Невиль», США в 1946 году. Она состояла практически из всех элементов характерных для генераторов постоянного тока: генератор переменного тока с обмоткой возбуждения (отдельно), блок селеновых выпрямителей (отдельно) и ключевой стабилизатор напряжения (СН), реле обратного тока (РОТ), ограничитель тока (ОТ) — три изделия в одном корпусе отдельно. Основное назначение изделия мощностью 4 кВт — специальные военные автомобили и автобусы. По массо-габаритным характеристикам данная разработка была в 2,5 раза меньше аналога на постоянном токе.

В СССР, примерно в 1954 году, была представлена первая конструкция генератора переменного тока только со СН и выпрямительным блоком на селеновых выпрямительных диодах. Основной разработчик МЭИ, коллектив которого ранее опубликовал статью по синхронным генераторам с селеновыми выпрямителями. В 1955 году была выпущена первая партия для автомобилей ГАЗ в количестве 2000 шт. Разработка, оптимизация серийной конструкции и организация производства были осуществлены под руководством НИИ Автоприборов (сейчас НИИАЭ) и завода КЗАТЭ г. Самара. Одними из ведущих разработчиков были Ю. А. Купеев (НИИ Автоприборов) и В. И. Василевский (КЗАТЭ г. Самара), благодаря которым в СССР и на Европейском континенте появилась первая серийная конструкция генераторов переменного тока.

В 1960 году фирма «Крайслер» представила первую в мире конструкцию с кремниевыми выпрямителями и улучшенной технологией изготовления. В остальном она повторяла разработку авторов из СССР. Тогда же в США начался массовый переход на генераторы переменного тока, который впоследствии произошёл и в СССР только в 1967 году.

Первый конкурентоспособным с изделиями фирмы «Крайслер» серийным генератором в СССР стал Г250.

Читайте так же:
Как отмыть ключи от ржавчины

На современных автомобилях применяются синхронные трёхфазные генераторы переменного тока со встроенным полупроводниковым трёхфазным выпрямителем.

Ротор автомобильного генератора переменного тока имеет обмотку возбуждения (у генератора постоянного тока обмотка возбуждения находится на сердечниках полюсов), ток подводится через щётки и контактные кольца. Статор имеет три обмотки, соединённые «звездой». Снимаемый со статора ток выпрямляется шестью полупроводниковыми диодами (встроены в выпрямительный щит) и становится постоянным пульсирующим. Далее выпрямленный ток поступает в бортовую электросеть автомобиля.

Ключевой стабилизатор напряжения регулирует ток обмотки возбуждения по принципу отрицательной обратной связи таким образом, чтобы выходное напряжение генератора было как можно более стабильным. Ключевой стабилизатор напряжения на триггере Шмитта позволяет применять более низкочастотные ключевые регулирующие элементы, которые дешевле и более широко распространены, чем высокочастотные ключевые регулирующие элементы, вплоть до таких низкочастотных ключевых регулирующих элементов, как реле.

Ключевые стабилизаторы напряжения генераторов переменного тока могут быть вибрационные (только электромагнитные реле), контактно-транзисторные (электромагнитные реле, управляемые транзисторной схемой) или бесконтактные (электромагнитное реле отсутствует, ток регулирует электронный ключ на транзисторах). Конструктивное исполнение — выполненные в отдельном корпусе или встроенные в генератор.

Например, на автомобиле ГАЗ-53 применялся контактно-транзисторный стабилизатор напряжения РР-362 (генератор Г-250), на ВАЗ-2101 — вибрационный стабилизатор напряжения РР-380 (генератор Г-221), а на автомобиле Москвич-2140 — контактно-транзисторный стабилизатор напряжения РР-362А. На более поздних выпусках автомобилей ВАЗа и Москвиче-2140 использовался импульсный стабилизатор напряжения Я-112.

Ограничитель тока не используется, так как генераторы переменного тока обладают свойством самоограничения по току благодаря противоиндукции ротора фазными обмотками при возрастании в них тока, реле обратного тока отсутствует как таковое, его функции выполняет выпрямитель; характерно использование реле включения контрольной лампы работы генератора, питаемое или от нулевой точки выпрямителя, или от двух фаз генератора. В отдельных случаях (Г-502 на ЗАЗ-968) функции такого реле исполняет реле блокировки стартера РБ-1, оно же разрывает цепь питания реле стартера после пуска двигателя.

Для работы в тяжёлых условиях (высокая запыленность, грязь) выпускаются бесщёточные генераторы переменного тока. Такие применяются на сельскохозяйственной и другой спецтехнике. При одинаковых размерах и массе, мощность безщёточных генераторов переменного тока меньше, чем у генераторов с контактными кольцами.

Применение генераторов переменного тока позволяет уменьшить габаритные размеры, вес генератора, повысить его надёжность, сохранив или даже увеличив его мощность по сравнению с генераторами постоянного тока.

Например, генератор постоянного тока Г-12 (автомобиль ГАЗ-69) весит 11 кг, номинальный ток 20 ампер, а генератор переменного тока Г-250П2 (автомобиль УАЗ-469) при массе 5,2 кг выдаёт номинальный ток 28 ампер.

Как перевести Амперы в Киловатты

Основная характеристика большинства электроприборов мощность, которая указывается в ваттах или киловаттах, а главным параметром уставки защитных приборов и кабелей является ток, который измеряется в амперах.

Поэтому при выборе защитной аппаратуры, сечения проводов и в некоторых других случаях необходимо выполнить перерасчёт. Для этого необходимо знать, как перевести амперы в киловатты.

Для чего это необходимо

Ток, потребляемый электроприборами, подключёнными к одной линии, ограничен нагревом кабелей. При превышении этого параметра токоведущая жила начинает перегреваться, что приводит к выходу изоляции из строя, её разрушению и короткому замыканию.

Допустимый ток для проводов разного сечения указан в ПУЭ гл. 1.3. Исходя из этого параметра, подбираются уставки защитных автоматов и номинальный ток УЗО и реле напряжения.

Вторым фактором, отграничивающим мощность, является предельный ток бытовых розеток. Для большинства коммутационных устройств он составляет 16 А, поэтому мощность бытовых электроприборов производители ограничивают величиной 3,5 кВт.

На электрических вилках, счетчиках электрической энергии, предохранителях, розетках, автоматах, стоит маркировка в Амперах. Она указывает на максимальный ток, который способен выдержать прибор.

Однако на самих электроприборах наносится другая техническая характеристика. На них ставят маркировку, выраженную в Ваттах или Киловаттах, которая отображает мощность, потребляемую прибором.

Часто возникает проблема с подбором автоматов для определённой нагрузки. Совершенно понятно, что для электрической лампочки нужен один автомат, а для стиральной машины или бойлера – более мощный.

Тут – то и возникает вполне логический вопрос и проблема как перевести Амперы в Киловатты. Благодаря тому, что в России напряжение в электрической сети переменное, существует возможность самостоятельно рассчитать соотношение Ампер Ватт, используя нижеприведённую информацию.

Какие параметры необходимы для расчёта

Непосредственно рассчитать, сколько ампер в одном киловатте невозможно, это разные величины, как объём и вес, и для пересчёта необходимо использовать несколько параметров и специальные формулы.

Обозначение напряжения, тока и мощности

Для определения потребляемого электроприбором тока, а так же перед тем, как перевести амперы в киловатты, необходимо измерить и использовать следующие параметры сети и оборудования:

  • Напряжение. Это разность потенциалов между различными участками электроцепи. Для бытовых электроприборов это потенциал между фазным и нейтральным проводами. Условно напряжение можно сравнить с давлением воды в водопроводе. Единица измерения этого параметра называется «вольт», свое название он получил в честь итальянского физика и физиолога Алессандро Вольты. Условное обозначение напряжения в формулах «U», числовое значение разности потенциалов указывается, как *В или *V.
  • Сила тока. Указывает на количество заряженных частиц, проходящих по проводнику за 1 секунду. Аналогом силы тока может служить поток воды в трубе. Единица силы тока называется «ампер» и она так называется в честь французского физика Андре́-Мари́ Ампе́ра. В формулах ток указывается «I», а величина силы тока обозначается *А.
  • Мощность. Определяет работу, выполненную в единицу времени. Этот параметр носит название «ватт», в формулах он указывается как «Р», а числовое значение выглядит как «Вт» или *W. Мощность электроприборов большой мощности измеряется в «киловаттах» или «кВт», причём 1кВт=1000Вт. Название единице мощности дано в честь шотландско-ирландского изобретателя-механика Джеймса Уатта (Ватта).

Как измеряется электрическая мощность

Мощность, потребляемую электроприбором или вырабатываемую генератором нельзя узнать простым измерением, как ток или напряжение. Его величина зависит от обоих параметров, и существует несколько способов узнать эту её значение:

  • Использовать ваттметр . У этого прибора имеются две пары выводов, одна из которых включается параллельно с оборудованием и измеряет проходящий через него ток, а вторая пара определяет напряжение сети.
  • Отдельно при помощи мультиметра узнать протекающий ток и напряжение на подключении к оборудованию. После этого использовать соответствующие формулы и произвести расчёт мощности.
  • Измерить только ток , а величину напряжения в сети принять равной 220В или использовать паспортные данные блока питания, после чего произвести расчёт. Это самый простой, хотя и приблизительный метод определения мощности.
Информация! При падении напряжения в сети, особенно в сёлах, где имеется значительная протяжённость линий электропередач, одновременно падает мощность электрообогревателей, бойлеров и электроплит.
Читайте так же:
Как подключить электродуховой шкаф к электросети

По какой формуле выполняется расчет

На корпусе большинства аппаратов не указан ток потребления и для того, чтобы определить соответствие приборов и проводки необходимо произвести перевод ампер в киловатты.

Эти два параметра, согласно законам электротехники связаны между собой, поэтому для того, чтобы узнать, сколько киловатт выдержит автомат на 40 Ампер, достаточно применить соответствующую формулу или использовать один из онлайн-калькуляторов.

Расчёт мощности производится путём произведения между собой тока и напряжения, причём все величины должны иметь одинаковую разрядность — ватты, вольты и амперы или киловатты, киловольты и килоамперы.

Самый простой вид имеет формула для постоянного тока и бытовых электроприборов Р=UxI, где:

  1. Р — мощность;
  2. U — напряжение;
  3. I — сила тока.

Для более точного расчёта следует учитывать коэффициент мощности, или cosφ, указывающий соотношение активной и полной мощности. В этом случае формула имеет следующий вид P=I*U*cosφ. Этот параметр учитывается при расчёте мощных трансформаторов и других промышленных электроприборов

В трёхфазной сети учитывается так же сдвиг фаз и расчёт мощности производится по формуле:

Перевод Ампер в киловатты

Однозначно сказать, сколько ампер в 1 киловатте невозможно. Для этого необходимо учесть напряжение сети и количество фаз. В основе этих расчётов находятся формулы, согласно которым мощность равна произведению силы тока и напряжения P=U*I или, используя алгебраическое преобразование ток равен результату деления мощности на напряжение I=P/U.

как перевести амперы в киловатты

В разных сетях эти формулы немного отличаются друг от друга, учитывая особенности конкретной ситуации.

Однофазная сеть

В России, странах СНГ и некоторых других государствах напряжение однофазной сети равно 220В и, несмотря на то, что фактические параметры сети могут отличаться в любую сторону, при расчёте сечения проводов и уставок автоматических выключателей используется именно эта величина.

Следовательно, формулы перевода амперов в киловатты и обратно имеют следующий вид:

  • Определение силы тока. Для этого используется выражение I=P/U=Р/220. При этом допускается использовать упрощённый вариант расчёта I(А)=Р(кВт)*4.45≈Р(кВт)*5.
  • Расчёт допустимой мощности. В том случае, если имеется кабель или автомат, то для определения мощности электроприборов применяется формула P=U*I=220*I или Р(кВт)=I(А)/4,5≈I(А)/5

Использование упрощённых вариантов расчёта является в некоторой степени более правильным, так как при этом автоматически добавляется необходимый запас сечения кабеля или уставки автомата.

Трехфазная сеть

Расчёт в трёхфазной сети производится в двух случаях — подключение к линии большого количества однофазных приборов или для монтажа электродвигателя. В первом случае вычисления выполняются для каждой фазы в отдельности, а для электродвигателя необходимо учитывать коэффициент мощности cosφ, для электромашин он равен 0,8-0,85.

Формулы для трёхфазных электродвигателей имеют следующий вид:

  • Расчёт силы тока для выбора автомата и сечения провода. В сети 380В ток рассчитывается по формуле I=P/(U*√3*cosφ)=Р/(380*1.7*0.80)=Р/516. Допускается применять упрощённый вариант I(A)≈Р(кВт)*2.
  • При наличии автоматического выключателя и кабеля необходим расчёт максимальной мощности электродвигателя в данной сети. Для этого используется выражение P= √3*U*I*сos φ=1,7*380*I*0.80 или Р(кВт)≈I(А)/2.
Важно! Для выбора уставки тепловой защиты необходимо использовать паспортные данные электродвигателя.

Сеть постоянного тока

В сети постоянного тока применяется первоначальный вариант формул I=P/U и P=I*U. Чаще всего этот расчёт производится для выбора блока питания светодиодной ленты, в параметрах которой указываются только напряжение питания и мощность одного метра, или длины ленты, которую можно подключить к данному источнику напряжения.

Поэтому при вычислении используется длина ленты L и формулы приобретают вид I(бп)=P*L/U=P*L/12 и L=I(бп)/(Р/U). Кроме того, для увеличения срока службы драйвера (блока питания) его необходимо выбирать с 10% запасом мощности.

как рассчитать ток светодиодной ленты

Как перевести амперы в киловатты в однофазной сети

  1. — Ватт = Ампер * Вольт:

перевод амперы в ватты

  • — Ампер = Ватты / Вольт:

перевод ватты в амперы

Для того чтобы Ватты (Вт) перевести в киловатты (кВт) нужно полученное значение разделить на 1000. То есть в 1000 Вт = 1 кВт.

ватты в киловатты

Как перевести амперы в киловатты в трехфазной сети

  1. — Ватт = √3 * Ампер * Вольт * сos φ:

перевод ампер в ватт для трехфазной сети

  1. — Ампер = Ватты / (√3 * Вольт * cosφ):

перевод ватты в амперы для трехфазной сети

Итак, например, рассчитывая ток, который будет течь по проводам при включении электрического чайника мощностью 2 кВт (2000 Ватт) и с переменным напряжением в сети 220 Вольт, следует применить следующую формулу. Разделить 2 кВт на 220 Вольт. В итоге получим 9 – это и будет количество Ампер.

расчет тока по формуле

Информация! сos φ — коэффициент мощности, показывающий потребление реактивной мощности. Его нужно учитывать для таких нагрузок как электродвигатели, трансформаторы, линии электропередач. Коэффициент мощности cosφ для бытовых электроприборов принимается равным 1 и при расчётах не учитывается.

По сути это не малый ток, поэтому, подбирая кабель, следует учитывать его сечение. Провода, изготовленные из алюминия могут выдерживать значительно меньшие нагрузки, чем медные того же сечения.

Но и слишком тонкие провода из меди тоже могут не выдержать нагрузки. В лучшем случае они просто перегорят или «выбьет» автоматы. В худшем – может стать причиной пожара. Поэтому подходить к выбору автоматов и сечения провода нужно крайне ответственно.

Пример перевода ампер в киловатты

Для лучшего понимания того, как перевести амперы в киловатты, можно рассмотреть несколько практических примеров применения этих формул.

Для однофазной сети 220 Вольт

Предположим, что выделенная линия розеток подключена к автоматическому выключателю С16, имеющему уставку 16А. Необходимо узнать, какая общая мощность электроприборов может быть подключена к сети.

Расчёт выполняется по формуле P=U*I=220В*16А=3520 Вт=3.5 кВт. Однако желательно уменьшить эту величину на 10-15% для того, чтобы предотвратить ложные срабатывания защиты или использовать упрощённое выражение Р(кВт)=I(A)/5=16/5=3,2 кВт.

В паспорте кондиционеров указываются сразу два значения мощности — тепловая и электрическая, причём тепловая в несколько раз больше. Это связано с тем, что этот аппарат работает по принципу теплового насоса и при расчётах необходимо учитывать именно электрическую мощность.

Для трехфазной сети 380 Вольт

При подключении трёхфазных электродвигателей чаще всего производится выбор автомата и кабеля, а не мощности электромашины. Предположим, имеется электродвигатель 5 кВт, сколько ампер должна быть уставка автомата?

Этот расчёт в сети 380В производится по формуле I=P/(U*√3*cosφ)=5000/(380*1.7*0.80)=5000/516=9,68А или по упрощённому варианту I(A)≈Р(кВт)*2=5*2=10А.

Сеть постоянного тока 12 Вольт

Достаточно часто возникает ситуация при которой необходимо подобрать блок питания к светодиодной ленте. Предположим, что в наличии имеются 4 метра полосы, на этикетке которой указано, что мощность одного метра 14,4 Вт/м. В этом случае вычисления производятся в несколько этапов:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector